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REGULATING STEM CELLS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 12/224,913 filed on Feb. 22,2010,
which issued on Sep. 24,2013 as U.S. Pat. No. 8,541,232, and
which is a 35 U.S.C. §371 U.S. National Entry of PCT/
1L.2007/000308 filed on Mar. 8, 2007, which designated the
United States, and which claims benefit under 35 U.S.C.
§119(e) of U.S. Provisional Patent Application 60/780,781
filed on Mar. 8, 2006, the contents of each of which are
incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

The present invention generally relates to regulating stem
cells. Specifically, the present invention relates to the induc-
tion of migration and differentiation of stem cells.

BACKGROUND OF THE INVENTION

Since the discovery of stem cells, it has been understood
that they have significant potential to effectively treat many
diseases [1]. Pluripotent stem cells derived from embryos and
fetal tissue have the potential to produce more than 200 dif-
ferent known cell types, and thus can potentially replace
dying or damaged cells of any specific tissue [2, 3]. Stem cells
differ from other types of cells in the body, and, regardless of
their source, have three general properties: (a) they are
capable of dividing and renewing themselves for long peri-
ods, (b) they are undifferentiated, and (c) they can give rise to
specialized cell types.

Stem cells have been identified in most organs and tissues,
and can be found in adult animals and humans. Committed
adult stem cells (also referred as somatic stem cells) were
identified long ago in bone marrow. In the past decade, com-
mitted adult stem cells have also been identified in tissues that
were previously not thought to contain them, such as brain
tissue, skin tissue, and skeletal muscle tissue [8, 9, 10, 11, 12,
13]. It was initially believed that adult stem cells are tissue-
committed cells that can only differentiate into cells of the
same tissue and thus regenerate the damaged tissue[1, 4, 5, 6,
7]. However, recent work suggests that adult organ-specific
stem cells are capable of differentiating into cells of different
tissues [8, 9, 10, 11, 14, 16]. Transplantation of cells derived
from brain, muscle, skin and fat tissue has been shown to
result in a detectable contribution in several lineages distinct
from their tissue of origin [8, 9, 10, 11]. For example, recent
reports support the view that cells derived from hematopoi-
etic stem cells (HSCs) can differentiate into cells native to the
adult brain [14], providing additional evidence for the plas-
ticity of such stem cells.

The HSC is the best characterized stem cell. This cell,
which originates in bone marrow, peripheral blood, cord
blood, the fetal liver, and the yolk sac, generates blood cells
and gives rise to multiple hematopoietic lineages. As early as
1998, researchers reported that pluripotent stem cells from
bone marrow can, under certain conditions, develop into sev-
eral cell types different from known hematopoietic cells [13,
17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Such an ability to
change lineage is referred to as cellular transdifferentiation or
cell plasticity. Bone marrow-derived stem cells (BMSCs)
have already been shown to have the ability to differentiate
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into adipocytes, chondrocytes, osteocytes, hepatocytes,
endothelial cells, skeletal muscle cells, and neurons [28, 29,
30,31, 32].

The process of stem cell differentiation is controlled by
internal signals, which are activated by genes within the cell,
and by external signals for cell differentiation that include
chemicals secreted by other cells, physical contact with
neighboring cells, and certain molecules in the microenviron-
ment [33, 34]. For example, if embryonic stem cells are
allowed to aggregate to form embryoid bodies, they begin to
differentiate spontaneously. Embryonic cells of embryoid
bodies can form muscle cells, nerve cells, and many other cell
types [35, 36]. Although spontaneous differentiation is a good
indication that a culture of embryonic stem cells is healthy, it
is not an efficient way to produce cultures of specific cell
types. In order to generate cultures of specific types of differ-
entiated cells, e.g., myocytes, blood cells, or nerve cells,
scientists must control the multiplication and the differentia-
tion of stem cells by regulating the chemical composition of
the culture medium, altering the surface of the culture dish,
and/or by inserting specific genes.

Successful attempts have been made in vitro to induce
differentiation of adult stem cells into other cells by co-
culturing with other adult cells. For example, recent work has
shown that co-culturing adult mouse BMSCs and embryonic
heart tissue causes the BMSCs to both integrate into cardiac
tissue and differentiate into cardiomyocytes (CMCs). Other
work has shown that mesenchymal stem cells acquire char-
acteristics of cells in the periodontal ligament when co-cul-
tured with periodontal ligament tissue [37, 38].

Tissue injury may be one of the stimulants for the recruit-
ment of stem cells to an injured site, by causing changes in the
tissue environment, thereby drawing stem cells from periph-
eral blood, as well as triggering tissue replacement by locally
resident stem cells. Some reports of elevated levels of
chemokines and chemokine receptors such as CXCR4-SDF
explain some of this in vivo stem cell recruitment [39]. Other
reports suggest an important role of the chemokine CXCR8
(IL-8) as an anti-apoptotic agent which promotes tissue sur-
vival and induces recruitment of endogenous stem/progenitor
cells [M, N, O]. An example of this mechanism can be seen in
recent work showing that stem cells differentiate into liver
cells when co-cultured with injured liver cells separated from
the stem cells by a barrier [30].

CD31, the platelet endothelial cell adhesion molecule-1
(PECAM-1), is widely used as a marker during the develop-
ment of endothelial cell progenitors, vasculogenesis and
angiogenesis (A, B, C, D, E, F, HP. CD31 is constitutively
expressed on the surface of adult and embryonic endothelial
cells, is a major constituent of the endothelial cell intercellu-
lar junction (where up to 10°6 PECAM-1 molecules are con-
centrated) and is weakly expressed on many peripheral leu-
kocytes and platelets (E, G, H). With a few minor exceptions,
CD31 is not present on fibroblasts, epithelium, muscle, or
other nonvascular cells. Independently of CD31 expression,
endothelial cells and their progenitors are typically charac-
terized by binding of Ulex-lectin in combination with the
ability to uptake Acetylated-Low Density Lipoprotein (Ac-
LDL) (D).

Regenerative medicine is an emerging scientific field with
implications for both basic and practical research. Stem and
progenitor cells are applied in a form of cellular therapy for
local tissue repair and regeneration [41, 42]. These treatments
aim to treat disorders in practically all tissues and organs,
such as the bladder, intestine, kidney, trachea, eye, heart
valves, and bones [43, 44]. Intensive studies are being con-
ducted worldwide in order to generate stem cell-based tissue
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engineering therapies. These studies include experiments for
the regeneration of blood vessels [13], bone [35, 45], carti-
lage, cornea, dentin, heart muscle [46], liver, pancreas [47],
nervous tissue, skeletal muscle, and skin [18, 34, 48, 49].
Stem cell-based therapies can use cells from various organs in
order to generate different tissues. For example, epithelial
surfaces (taken from various tissues such as the skin, cornea
and mucosal membrane) may be used as a source for corneal
and skeletal tissues [50, 51]. Additionally, in a more wide-
spread application, blood marrow-derived stem cells are used
for regeneration of several different tissues such as bone,
cartilage, adipocytes, neurons, and cells of the hematopoietic
system [33, 42].

Stem cells can be administrated systemically or locally
using injections to the injured site. However, other potential
administration routes and usage of different medical devices
are being developed and tested. Different medical devices
such as chemical, metal or biodegradable based devices have
been described for the administration of stem cells into the
heart and blood vessels (J, K).

US Patent Application Publication 2004/0228847 to Gold-
schmidt-Clermont et al., which is incorporated herein by
reference, describes stem/progenitor cells and, in particular,
therapeutic strategies based on the use of such cells to effect
vascular rejuvenation and/or to serve as delivery vehicles.

PCT Patent Publication WO 2005/120090 to Fulga et al.,
which is assigned to the assignee of the present patent appli-
cation and is incorporated herein by reference, describes a
method for use with extracted blood, including (a) applying
blood to a first gradient suitable for selecting first-pass cells
having a density less than 1.077 g/ml; (b) applying the first-
pass cells to a second gradient suitable for selecting second-
pass cells having a density between 1.055 and 1.074 g/ml; (c)
increasing the number of cells having a density between
1.055 and 1.074 g/ml, by culturing the second-pass cells for a
period lasting between 3 and 30 days; and (d) identifying
endothelial progenitor cells in the cultured cells. Other
embodiments are also described.

United States Patent Application Publication 2004-
0228897 to Zhang et al., which is incorporated herein by
reference, describes a medical device for use to assist stem
cell and/or stem cell derivatives in repopulating, repairing
and/or replacing the heart tissue in a failing heart muscle, in
order to restore the heart’s ability to pump blood. The medical
device is made of biocompatible materials. The specific
design of the device is described as facilitating the stem cells
coated in the device to repopulate heart muscles inside the
heart. Stem cells are attached to the coated device, prolifer-
ated and/or differentiated on the device in a bioreactor before
implantation. The device also contains bioactive components
that diminish rejection by the host’s immune system. The
device may be directly implanted into the failing heart muscle
area to assist stem cells to repair failing heart muscles via
surgical and/or percutaneous catheter based procedures. In
another embodiment, the device may be implanted to the
surgical site where abnormal heart muscles are removed, to
assist stem cells to repopulate heart muscles, to replace the
failing heart muscles.

US Patent Application Publication 2005/0209556 to
Tresco et al., which is incorporated herein by reference,
describes a device and method for the delivery of cells, tis-
sues, enzymes and/or pharmacological agents for the treat-
ment or prevention of diseases, disorders or deficiencies. The
device is placed intravascularly and includes a chamber that
houses living cells delimited by a membrane on either side
that physically separates the cells from the blood stream and
the central lumen of the catheter. The device can be inserted

10

15

20

25

30

35

40

45

50

55

60

65

4

over a guidewire and permits flushing and reloading of the
central lumen with viability supporting factors that sustain
the cells in the outer chamber for long indwelling times with-
out removing it from the body. In addition, the central lumen
can be used to deliver therapeutic substances or withdraw
blood. The new intravascular catheter is described as being
able to be used for the treatment or prevention of a variety of
diseases and disorders, and may use the implantation of living
cells, tissues, enzymes or pharmacological agents. The device
is described as being used, for example, for non-therapeutic
purposes that may involve sustained intravascular release of
biological factors as, for example, in stimulating growth of
farm animals to augment the production of meat. Placement
of cells within the device for release of angiogenesis, cytok-
ines, enzymes, and other factors is described. The use of stem
cells within the device is also described.

U.S. Pat. No. 6,810,286 to Donovan et al., which is incor-
porated herein by reference, describes a stimulatory device
for the controlled production of angiogenic growth factors.
More specifically, a subthreshold pulse generator is used for
the local production of vascular endothelial growth factor.

The following references, which are incorporated herein
by reference, may be of interest:
1.Leblond C. P. (1964), “Classification of cell populations on

the basis of their proliferative behaviour,” Natl. Cancer

Inst. Monogr. 14:119-150
2. Evans M. J. and Kaufman M. H. (1981), “Establishment in

culture of pluripotential cells from mouse embryos,”

Nature 292:154-156
3. Donovan P. J. and Gearhart J. (2001), “The end of the

beginning for pluripotent stem cells,” Nature 414:92-97
4. Spradling A. et al. (2001), “Stem cells find their niche,”

Nature 414:98-104
5. Weissman I. L. et al. (2001), “Stem and progenitor cells:

origins, phenotypes, lineage commitments, and transdif-

ferentiations,” Annu. Rev. Cell. Dev. Biol. 17:387-403
6. Weissman 1. L. (2000), “Stem cells: units of development,

units of regeneration, and units in evolution,” Cell 100:

157-68
7. Cheng A, Wang S, Cai J, Rao M S, Mattson M P (2003),

“Nitric oxide acts in a positive feedback loop with BDNF

to regulate neural progenitor cell proliferation and differ-

entiation in the mammalian brain,” Dev Biol. 258(2):319-

33
8. Cousin B, Andre M, Arnaud E, Penicaud L, Casteilla L

(2003), “Reconstitution of lethally irradiated mice by cells

isolated from adipose tissue,” Biochem Biophys Res Com-

mun. 301(4):1016-22
9. Anderson D. J., Gage, F. H., and Weissman, 1. L.. (2001),

“Can stem cells cross lineage boundaries?” Nat. Med.

7:393-395
10. Robey P. G. (2000), “Stem cells near the century mark,” J.

Clin. Invest. 105:1489-1491
11. Eisenberg L M, Burns L, Eisenberg C A (2003), “Hemato-

poietic cells from bone marrow have the potential to dif-

ferentiate into cardiomyocytes in vitro,” Anat Rec. 274A
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SUMMARY OF THE INVENTION

In the context of the present patent application and in the
claims, a “core cell population” (CCP) is a population of at
least 5 million cells which have a density of less than 1.072
g/ml, and atleast 1% of which are CD34+CD45-/Dim (i.e., at
least 50,000 of the cells are both (a) CD34 positive and (b)
CDA45 negative or CD45 Dim).

A CCP is typically, but not necessarily, generated from a
hematopoietic source.

10

15

20

25

30

35

40

45

50

55

60

65

8

For most applications, at least 40% of the CCP is
CD31Bright (i.e., at least 2 million cells out of the 5 million
cells are CD31Bright).

While not being limited to any method of detection, cells
expressing increased amounts of CD31 relative to isotype
control are termed “CD31Bright” cells, because these cells
bear more CD31 molecules relative to other cells, and thus
tend to fluoresce brightly when stained with fluorescently-
labeled antibodies. In this context, in the specification and in
the claims, “bright” means that the fluorescence intensity of
the labeled cellular marker of interest is at least 50 times
higher (if measured using flow cytometry) than the isotype
control intensity.

In accordance with an embodiment of the present inven-
tion, a method for producing a progenitor/precursor cell
population (PCP) is provided, comprising (a) processing cells
extracted from a cell donor to yield a CCP, and (b) stimulating
the CCP to differentiate into the progenitor/precursor cell
population. In the context of the specification and in the
claims, “progenitor/precursor” cells are partially differenti-
ated cells that are able to divide and give rise to differentiated
cells.

While for some applications described herein, the density
of the cells in the CCP is typically less than 1.072 g/ml (as
described), for some applications, the CCP has at least 5
million cells having a density of less than 1.062 g/ml.

In the context of the specification and in the claims, an
“elemental cell population” (ECP) is a population of at least
5 million cells which have a density ofless than 1.072 g/ml, at
least 1.0% of which are CD34+CD45-/Dim, and at least 30%
of which are CD31Bright. Typically, but not necessarily, at
least 40% of the cells in the ECP are CD31Bright. Typically,
but not necessarily, at least 30% of the cells in the ECP are
CD14+. Typically, but not necessarily, at least 1.5% or at least
2% of the cells in the ECP are CD34+CD45-/Dim. For some
applications, the ECP has at least 5 million cells having a
density of less than 1.062 g/ml. It is typically but not neces-
sarily the case that a CCP is also an ECP. It is noted that,
although for simplicity, embodiments of the present invention
are described herein with respect to procedures relating to a
CCP, the scope of the present invention includes, in each
instance, performing the same procedure in relation to an
ECP.

An “initiating cell population” (ICP), in the context of the
specification and in the claims, is a cell population that can
differentiate into a PCP. CCPs and ECPs are both examples of
an ICP. An ICP is typically but not necessarily created by a
process that comprises separating lower density cells (that are
included in the ICP) from higher density cells. Such a sepa-
ration may be accomplished, for example, by use of one or
more gradients.

For some applications, the CCP-derived progenitor cells
are used as a therapeutic cell product (e.g., for cancer therapy,
for tissue regeneration, for tissue engineering, and/or for tis-
sue replacement), as a research tool (e.g., for research of
signal transduction, or for screening of growth factors), and/
or as a diagnostic tool. When the CCP-derived progenitor
cells are used as a therapeutic cell product, they are typically
administered to a patient, in whom the progenitor cells mature
into the desired cells (e.g., endothelial cells, retinal cells,
etc.).

In an embodiment, at least one result of at least one stage in
a process described herein is used as a diagnostic indicator.
For example, pathology of a patient may be indicated if an in
vitro procedure performed on extracted blood of the patient
does not produce a CCP, when the same procedure performed
on cells extracted from a healthy volunteer would result in
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production of the CCP. Alternatively or additionally, a pathol-
ogy of a patient may be indicated if an in vitro stimulation
procedure performed on an autologous CCP does not produce
a desired number of progenitor cells of a particular class,
when the same procedure would produce the desired number
of progenitor cells of a particular class from a CCP derived
from cells of a healthy volunteer. Further alternatively or
additionally, a pathology of a patient may be indicated if one
ormore in vitro protocols used to assess a PCP do notyield the
same results as a PCP originated from a healthy volunteer.
Still further alternatively or additionally, a pathology of a
patient may be indicated if one or more protocols used to
assess a PCP following implantation within a patient do not
perform as expected (e.g., like a PCP implanted in a healthy
animal or human volunteer, or in an animal model of a similar
disease).

When hematopoietic stem cells are used as a source to
create the CCP, the resultant CCP is typically but not neces-
sarily characterized by at least 40% of the cells in the CCP
being CD31Bright, and at least 2.2% or at least 2.5% of the
cells being CD34+CD45-/Dim.

Typically, the process of stimulating the CCP takes
between about 2 and about 15 days (e.g., between about 3 and
about 15 days), or between about 15 and about 120 days (e.g.,
between about 15 and about 30 days). Alternatively, stimu-
lating the CCP takes less than 2 days, or more than 120 days.

The mammalian cell donor may be human or non-human,
as appropriate. For some applications, the mammalian cell
donor ultimately receives an administration of a product
derived from the CCP, while for other applications, the mam-
malian cell donor does not receive such a product. Stem cells
that can be used to produce the CCP are typically but not
necessarily derived from one or more of the following source
tissues: embryonic tissue, umbilical cord blood or tissue,
neonatal tissue, adult tissue, bone marrow, mobilized blood,
peripheral blood, peripheral blood mononuclear cells, skin
cells, and other stem-cell-containing tissue. It is noted that the
stem cells may be obtained from fresh samples of these
sources or from frozen and then thawed cells from these
source tissues.

The CCP is typically prepared by generating or obtaining a
single cell suspension from one of the abovementioned
source tissues. For example, mobilized blood mononuclear
cells may be extracted using a 1.077 g/ml density gradient,
e.g., aFicoll™ gradient, including copolymers of sucrose and
epichlorohydrin. It is to be noted that such a gradient is not
used for all applications, e.g., for applications in which a
single cell suspension is generated from a non-hematopoietic
source (e.g., mucosal or skin cells). The output of this gradi-
ent is then typically passed through a second gradient (e.g., a
Percoll™ gradient, including polyvinylpyrrolidone-coated
silica colloids), suitable for selecting cells having a density
less than 1.072 g/ml or less than 1.062 g/ml. These selected
cells then typically propagate, in vitro, until they become a
CCP. As appropriate, other density gradients may be used,
independently of or in combination with those cited above in
order to enrich the designated cells of the CCP. For example,
an OptiPrep™ gradient, including an aqueous solution of
Todixanol, and/or a Nycodenz™ gradient may also be used.

The CCP is typically stimulated to generate progenitor
cells of one or more of the following cell classes:

Blood cells (e.g., red blood cells and/or white blood cells
(such as T cells or B cells));

Neural lineage cells (e.g., CNS neurons, oligodendrocytes,
astrocytes, peripheral nervous system (PNS) neurons, and
retinal cells (including, but not limited to, photoreceptors,
pigment epithelium cells or retinal ganglion cells).
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Endothelial cells;

Pericytes;

Smooth muscle cells;

Cardiomyocytes;

Osteoblasts;

Pancreatic endocrine or exocrine cells (e.g., beta cells or
alpha cells);

Hepatic tissue (e.g., hepatocytes); and

Kidney cells.

For some applications, the CCP is transfected with a gene
prior to the stimulation of the CCP, whereupon the CCP
differentiates into a population of desired progenitor cells
containing the transfected gene. Typically, these progenitor
cells are then administered to a patient. For some applica-
tions, the PCP is transfected with a gene. Typically, these PCP
cells are then administered to a patient.

In order to stimulate the CCP to differentiate into a desired
class of progenitor cells, or in association with stimulation of
the CCP to differentiate into a desired class of progenitor
cells, the CCP is typically directly or indirectly co-cultured
with “target tissue.” The “target tissue” typically but not nec-
essarily includes tissue from an organ whose cells represent a
desired final state of the progenitor cells. For example, the
target tissue may include brain or similar tissue, or heart or
similar tissue, if it is desired for the progenitor cells to differ-
entiate into brain tissue or into heart tissue, respectively.
Other examples include:

(a) co-culturing the CCP with peripheral nerves (and/or
culturing the CCP in conditioned medium derived there-
from), to induce differentiation of the CCP into peripheral
neurons;

(b) co-culturing the CCP with central nervous system
(CNS) nerves (and/or culturing the CCP in conditioned
medium derived therefrom), to induce differentiation of the
CCP into CNS neurons;

(¢) co-culturing the CCP with retinal tissue (and/or cultur-
ing the CCP in conditioned medium derived therefrom), to
induce differentiation of the CCP into retinal tissue. The
retinal tissue may include, for example, one or more of:
pigment epithelium, or photoreceptors. As appropriate, the
retinal tissue may comprise fetal retinal tissue, embryonic
retinal tissue, or mature retinal tissue;

(d) co-culturing the CCP with blood vessel tissue (and/or
culturing the CCP in conditioned medium derived there-
from), to induce differentiation of the CCP into angiogenic
lineage tissue and/or cardiomyocytes (CMCs);

(e) co-culturing the CCP with cardiac tissue (and/or cul-
turing the CCP in conditioned medium derived therefrom), to
induce differentiation of the CCP into CMCs;

(D) co-culturing the CCP with pancreatic endocrine or exo-
crine tissue (and/or culturing the CCP in conditioned medium
derived therefrom), to induce differentiation of the CCP into
pancreatic endocrine or exocrine cells; and

(g) co-culturing the CCP with smooth muscle tissue (and/
or culturing the CCP in conditioned medium derived there-
from), to induce differentiation of the CCP into smooth
muscle cells.

Techniques described herein with respect to use of a target
tissue may be used with any “sample” tissue, regardless of
whether it is desired for the CCP to differentiate into a PCP
having cells like those in the sample tissue.

For some applications, slices or a homogenate of the target
tissue are used for co-culturing, although other techniques for
preparing the target tissue will be apparent to a person of
ordinary skill in the art who has read the disclosure of the
present patent application.
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The target tissue may be in essentially direct contact with
the CCP, or separated therefrom by a semi-permeable mem-
brane. As appropriate, the target tissue may be autologous,
syngeneic, allogeneic, or xenogeneic with respect to the
source tissue from which the CCP was produced. Alterna-
tively or additionally, the CCP is cultured in a conditioned
medium made using target tissue (e.g., a target tissue
described hereinabove), that is autologous, syngeneic, allo-
geneic, or xenogeneic with respect to the source tissue from
which the CCP was produced. For some applications, the
target tissue and the CCP are co-cultured in the conditioned
medium. It is to be noted that the source of the target tissue
may also be tissue from a cadaver, and/or may be lyophilized,
fresh, or frozen.

Alternatively or additionally, for some applications, to pro-
duce a desired class of progenitor cells, cells from the CCP are
cultured in the presence of stimulation caused by “stimulation
factors,” e.g., one or more antibodies, cytokines, growth fac-
tors, tissue-derived extra cellular matrix, and/or other mol-
ecules, such as: IL-8, anti-IL-8, anti-CD?34, anti-Tie-2, anti-
CD133, anti-CD117, LIF, EPO, IGF, b-FGF, M-CSF,
GM-CSF, TGF alpha, TGF beta, VEGF, BHA, BDNF, NGF,
NT3, NT4/5, GDNF, S-100, CNTF, EGF, NGF3, CFN,
ADMIF, estrogen, cortisone, dexamethasone, or any other
molecule from the steroid family, prolactin, an adrenocorti-
coid hormone, ACTH, glutamate, serotonin, acetylcholine,
NO, retinoic acid (RA), heparin, insulin, forskolin, a statin, an
anti-diabetic drug (e.g., a thiazolidinedione such as rosiglita-
zone), NO, MCDB-201, MCT-165, glatiramer acetate
(L-glutamic acid, L-alanine, L-tyrosine, L-lysine), a glati-
ramer acetate-like molecule, IFN alpha, IFN beta, or any
other immunoregulatory agent, sodium selenite, linoleic acid,
ascorbic acid, transferrin, 5-azacytidine, PDGF, VEGEF, car-
diotrophin, and thrombin.

In the context of the specification and in the claims, a
“glatiramer acetate-like molecule” means a copolymer com-
prising:

(a) the same four amino acids as in glatiramer acetate, but
in different ratios, (e.g., within 5%, 10%, or 25% of their
current values of L-glutamic acid:L-alanine:L-tyrosine:L.-
lysine=0.141:0.427:0.095:0.338);

(b) three of the four amino acids in glatiramer acetate, but
the fourth amino acid is replaced by a different naturally-
occurring or synthetic amino acid;

(c) four amino acids, in which at least one of the amino
acids is an enantiomer of the corresponding amino acid in
glatiramer acetate, and the remainder of the amino acids (if
any) are the corresponding [.-amino acids that are in glati-
ramer acetate; or

(d) a combination one or more of (a), (b), and (c).

It is to be appreciated that the particular stimulation factors
described herein are by way of illustration and not limitation,
and the scope of the present invention includes the use of
other stimulation factors. As appropriate, these may be uti-
lized in a concentration of between about 100 pg/ml and about
100 pg/ml (or molar equivalents). Typically, particular stimu-
lation factors are selected in accordance with the particular
class of progenitor cells desired. For example, to induce neu-
ral progenitor cells, one or more of the following stimulation
factors are used: BHA, BDNF, NGF, NT3, NT4/5, GDNF,
MCT-165, glatiramer acetate, a glatiramer acetate-like mol-
ecule, IFN alpha, IFN beta or any other immunoregulatory
agent, S-100, CNTF, EGF, NGF3, CFN, ADMIF, and acetyl-
choline. In another example, to induce CMC progenitors, one
or more of the following stimulation factors are used: bFGF,
cortisone, estrogen, progesterone, or any other molecule form
the steroid family, NO, sodium selenite, linoleic acid, ascor-
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bic acid, retinoic acid (RA) or any other derivative of vitamin
D, transferrin, S-azacytidine, MCT-165, glatiramer acetate, a
glatiramer acetate-like molecule, IFN alpha, IFN beta, or any
other immunoregulatory agent, TGF-beta, insulin, EGF, IGF,
PDGF, VEGF, cardiotrophin, MCDB201, and thrombin.

For some applications, the stimulation factors are intro-
duced to the CCP in a soluble form, and/or in an aggregated
form, and/or attached to a surface of a culture dish. In an
embodiment, the CCP is incubated on a surface comprising a
growth-enhancing molecule other than collagen or fibronec-
tin. The growth-enhancing molecule may comprise, for
example, VEGF or another suitable antibody or factor
described herein. As appropriate, the growth-enhancing mol-
ecule may be mixed with collagen or fibronectin or plasma, or
may be coated on the surface in a layer separate from a layer
on the surface that comprises collagen or fibronectin
or plasma. Alternatively, the only growth-enhancing mol-
ecule(s) on the surface of the culture dish is collagen and/or
fibronectin and/or plasma.

In the context of the present patent application and in the
claims, a surface “comprising” or “including” a molecule
means that the molecule is coated on the surface, attached to
the surface, or otherwise integrated into the surface.

Following stimulation of the CCP, the resultant product is
typically tested to verify that it has differentiated into a
desired form. Characterization of the differentiated cells is
performed according to the cells’ phenotypical, genotypical
and physiological features. In accordance with an embodi-
ment of the present invention, the cells are characterized by
assessing functional/physiological activity thereof, in combi-
nation with or in place of evaluating the presence or absence
of certain cellular markers. Evaluating functional/physiologi-
cal activity of the cells following the stimulation of the CCP
helps increase the likelihood that the product obtained and
designated for in vivo use will perform as expected.

For example, when angiogenic cell precursors (ACPs)
(which also include endothelial progenitor cells (EPCs)) are
the desired product, the product is typically positive for the
generation and/or expression of one or more of: CD34,
CD117, CDI133, Tie-2, CD31, CD34+CD133+, KDR,
CD34+KDR+, CD144, von Willebrand Factor, SH2
(CD105), SH3, fibronectin, collagen (types I, III and/or IV),
ICAM (type 1 or 2), VCAMI, Vimentin, BMP-R 1A, BMP-
RII, CD44, integrin b1, aSM-actin, and MUC18, CXCR4.
Additionally, the ACP product typically functionally demon-
strates uptake of Acetylated-Low Density Lipoprotein (Ac-
LDL) (i.e., the product is Ac-LDL+) and/or secretes one or
more ofthe following molecules: Interleukin-8 (IL-8), VEGF,
Angiogenin, Matrix metalloproteinase 2 (MMP-2), or Matrix
metalloproteinase 9 (MMP-9). Alternatively or additionally,
the ACP product generates tube-like structures on a semi-
solid matrix, and/or migrates towards chemoattractants (such
as SDF-1 or VEGF), and/or proliferates in response to cell
activation, and/or generates typical cell colonies/clusters. For
some applications, in order to further characterize the cells,
CD31Bright cells that demonstrate uptake of Ac-LDL are
examined.

Typically, greater than 1.5% of the core cell population that
was stimulated demonstrates one or more of the abovemen-
tioned characteristics. Alternatively, if neural progenitor cells
are the desired product, then the product is typically positive
for the generation and/or the expression of one or more of:
Nestin, NSE, Notch, numb, Musashi-1, presenilin, FGFR4,
Fz9, SOX 2, CD133, CD15, GD2, rhodopsin, recoverin, cal-
retinin, PAX6, RX, Chx10, O4, and GFAP. Further alterna-
tively, if cardiomyocyte (CMC) progenitors are the desired
product, then the product is typically positive for the genera-
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tion and/or the expression of one or more of: CD31, CD117,
sarcomeric alpha-actin, beta-actin, alpha-actinin, desmin,
cardiac troponin T, connexind3, alpha/beta-MHC, sarcom-
eric alpha-tropomyosin, Troponin I, GATA-4, Nkx2.5/Csx,
and MEF-2.

For some applications, the time duration between collect-
ing cells from the cell donor and using the CCP-derived
progenitor cells (e.g., for administration into a patient), is
reduced in order to effect almost immediate use thereof.
Alternatively, the cells are preserved at one or more points in
the process. For example, the CCP may be frozen prior to the
stimulation thereof that generates progenitor cells. Alterna-
tively, the CCP is stimulated in order to generate desired
progenitor cells, and these progenitor cells are frozen. In
either of these cases, the frozen cells may be stored and/or
transported, for subsequent thawing and use. “Transport,” in
the context of the specification and the claims, means trans-
port to a remote site, e.g., a site greater than 10 km or 100 km
away from a site where the CCP is first created.

It is noted that certain applications are suitable for large-
scale commercialization, including freezing and transport,
such as (a) generation of stores of CCPs, (b) generation of
stores of PCPs, (such as hematopoietic stem cells able to
mature into CMCs), and (c) stem cell banks where individuals
may store a CCP or differentiated progenitor cells, for pos-
sible later use. Other applications (such as acute post-stroke
autologous administration of neuronal stem cells) may not
benefit, or may not benefit as greatly, from the time delays
provided by freezing of cells, although the technique may be
useful for some purposes.

For some applications, the CCP is cultured for a period
lasting between about 1 and about 20 days (e.g., between
about 1 and 5 days) in a culture medium comprising less than
about 5% serum. Alternatively, the CCP is cultured for a
period lasting between about 1 and about 20 days (e.g.,
between about 1 and about 5 days) in a culture medium
comprising greater than about 10% serum. In an embodiment,
one of these periods follows the other of these periods.

For some applications, the CCP is cultured, during a low-
serum time period, in a culture medium comprising less than
about 10% serum, and, during a high-serum time period, in a
culture medium comprising greater than or equal to about
10% serum. In an embodiment, culturing the CCP during the
low-serum time period comprises culturing the CCP for a
duration of between about 1 and about 20 days (e.g., between
about 1 and about 5 days). Alternatively or additionally, cul-
turing the CCP during the high-serum time period comprises
culturing the CCP for a duration of between about 1 and about
120days (e.g., between about 1 and about 30 days). Typically,
culturing the CCP during the low-serum time period is per-
formed prior to culturing the CCP during the high-serum time
period. Alternatively, culturing the CCP during the low-se-
rum time period is performed following culturing the CCP
during the high-serum time period.

For some applications, during a hypoxic time period last-
ing at least about 2 hours, the CCP is cultured under hypoxic
conditions, and, during a non-hypoxic time period lasting at
least about 1 day, the CCP is cultured under non-hypoxic
conditions. Culturing the CCP under hypoxic conditions may
be performed prior to or following culturing the CCP under
non-hypoxic conditions. Typically, but not necessarily, the
hypoxic and non-hypoxic time-periods are within a culturing
time period lasting less than about 120 days (e.g., less than
about 30 days), and culturing the CCP under hypoxic condi-
tions comprises culturing the CCP under hypoxic conditions
during the first about two days of the culturing time period.
Alternatively or additionally, culturing the CCP under
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hypoxic conditions comprises culturing the CCP under
hypoxic conditions during the last about two days of the
culturing time period. Further alternatively or additionally,
culturing the CCP under hypoxic conditions comprises cul-
turing the CCP under hypoxic conditions for at least about 2
hours between a first two days and a last two days of the
culturing time period.

For some applications, the CCP is cultured in a culture
medium comprising at least one of the following: erythropoi-
etin, a statin, and an antidiabetic agent (e.g., a thiazolidinedi-
one such as rosiglitazone). Alternatively or additionally, the
CCP is cultured in the presence of one or more proliferation-
differentiation-enhancing agents, such as, anti-CD34, anti-
Tie-2, anti-CD133, anti-CDI117, LIF, EPO, IGF, b-FGF,
M-CSF, GM-CSF, TGF alpha, TGF beta, VEGF, BHA,
BDNF, NGF, NT3, NT4/5, GDNF, 5-100, CNTF, EGF,
NGF3, CFN, ADMIF, estrogen, prolactin, an adrenocorticoid
hormone, ACTH, glutamate, serotonin, acetylcholine, NO,
retinoic acid (RA) or any other vitamin D derivative, heparin,
insulin, forskolin, cortisone, cortisol, dexamethasone,
progesterone, or any other molecule from the steroid family,
a statin, or an anti-diabetic drug (e.g., a thiazolidinedione
such as rosiglitazone), MCDB-201, MCT-165, glatiramer
acetate, a glatiramer acetate-like molecule, IFN alpha, IFN
beta or any other immunoregulatory agent, sodium selenite,
linoleic acid, ascorbic acid, transferrin, 5-azacytidine, PDGF,
VEGF, cardiotrophin, and thrombin.

In an embodiment, techniques described herein are prac-
ticed in combination with (a) techniques described in one or
more of the references cited herein, (b) techniques described
in U.S. Provisional Patent Application 60/576,266, filed Jun.
1, 2004, (c) techniques described in U.S. Provisional Patent
Application 60/588,520, filed Jul. 15, 2004, (d) techniques
described in U.S. Provisional Patent Application 60/668,739,
filed Apr. 5, 2005, (e) techniques described in U.S. Provi-
sional Patent Application 60/636,391, filed Dec. 14, 2004, (f)
techniques described in PCT Patent Application PCT/
1L.2005/001345, filed Dec. 14, 2005, which published as WO
06/064501, and/or PCT Patent Application PCT/IL2005/
001348, filed Dec. 14, 2005, which published as WO
06/064504. Each of these patent applications is assigned to
the assignee of the present patent application and is incorpo-
rated herein by reference, and the scope of the present inven-
tion includes embodiments described therein.

In an embodiment, a method is provided comprising cul-
turing the CCP in a first container during a first portion of a
culturing period; removing all or at least some cells of the
CCP from the first container at the end of the first portion of
the period; and culturing, in a second container during a
second portion of the period, the cells removed from the first
container. For example, removing at least some of the CCP
cells may comprise selecting for removal cells that adhere to
a surface of the first container.

When the cells from a progenitor/precursor cell population
(PCP) derived from a CCP are designated for implantation
into a human, they should be generally free from any bacterial
or viral contamination. Additionally, in the case of a PCP of
angiogenic cell precursors (ACPs), one or more of the fol-
lowing phenotypical, genotypical and physiological condi-
tions should typically be met:

(D Cells should be morphologically characterized as (a)
larger in size than 20 uM and/or (b) elongated, spindle-shaped
or irregular-shaped and/or (c) granulated or dark nucleated
and/or (d) with flagella-like structures or pseudopodia and/or
(e) fibroblast-like or polygonal in shape.

(II) Final cell suspension should typically contain at least 1
million cells expressing one or more of the following mark-



US 9,234,173 B2

15
ers: CD31Bright, CD34, CDI117, CD133, Tie-2, CD34+
CD133+, KDR, CD34+KDR+, CD144, von Willebrand Fac-
tor, SH2 (CD105), SH3, fibronectin, collagen (types I, III
and/or IV), ICAM (type 1 or 2), VCAM], Vimentin, BMP-R
1A, BMP-RII, CD44, integrin b1, aSM-actin, and MUCI18,
CXCR4

(II1) Cells should be able to uptake Ac-LDL..

(IV) Cells expressing CD31Bright should also demon-
strate the ability to uptake Ac-LDL (e.g., at leastabout 10% or
about 25% of cells that are CD3 1Bright also are able to uptake
Ac-LDL).

(V) Cells should generally secrete one or more of the
following molecules: IL.-8, Angiogenin, VEGF, MMP2, and
MMP9.

(VI) Cells should generally form tube-like structures when
cultured on a semi-solid matrix containing growth factors.

(VII) Cells should generally migrate chemotactically
towards different chemoattractants, such as SDF-1 and
VEGF.

(VIII) Cells should generally form typical colonies and/or
clusters when cultured in medium supplemented with growth
factors such as VEGF and GM-SCF.

It is noted that the cells in CCPs generated from various
tissues typically can be characterized as having greater than
75% viability.

It is noted that CCPs generated from blood, bone marrow,
and umbilical cord blood, typically have greater than 70% of
their cells being CD45+.

In some embodiments of the present invention, a novel
composition of matter is provided, comprising (a) a cell popu-
lation, or (b) a mixture comprising a cell population and
molecules produced by the cell population, wherein (a) or (b)
are produced by a method described herein (for example, in
one of the methods set forth in the following paragraphs
preceding the Brief Description section of the present patent
application, or in one of the methods described in the Detailed
Description section of the present patent application).

There is therefore provided, in accordance with an embodi-
ment of the invention, a composition of matter, including a
population of cultured cells that includes a sub-population of
cells that both stain as CD3 1Bright and demonstrate uptake of
Ac-LDL+.

In an embodiment, the sub-population includes at least
10%, 25%, or 50% of the cells in the population.

In an embodiment, at least 1.5% of the cells of the popu-
lation include at least one morphological feature selected
from the group consisting of: a cell size larger than 20 um, an
elongated cell, a spindle-shaped cell, an irregularly-shaped
cell, a granulated cell, a cell including an enlarged dark
nucleus, a multinuclear cell, a cell including flagella-like
structures, a cell including pseudopodia, and a cell having a
polygonal shape.

In an embodiment, at least 1.5% of the cells of the popu-
lation include at least one feature selected from the group
consisting of: CD34, CD117,CD133, Tie-2, CD34+CD133+,
KDR, CD34+KDR+, CD144, von Willebrand Factor, SH2
(CD105), SH3, fibronectin, collagen type I, collagen type 111,
collagen type IV, ICAM type 1, ICAM type 2, VCAMI,
vimentin, BMP-R 1A, BMP-RII, CD44, integrin b1, aSM-
actin, MUC18, and CXCR4.

In an embodiment, at least 1.5% of the cells of the popu-
lation secrete at least one molecule selected from the group
consisting of: I1.-8, angiogenin, VEGF, MMP2, and MMP9.

In an embodiment, at least 1.5% of the cells of the popu-
lation include at least one feature selected from the group
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consisting of: a tube-like structure, a tendency to form a
colony, atendency to form a cluster, and a tendency to migrate
towards a chemoattractant.

There is further provided, in accordance with an embodi-
ment of the invention, a method including in vitro stimulating
an initiating cell population (ICP) of at least 5 million cells
that have a density of less than 1.072 g/ml, at least 1% of
which are CD34+CD45-/Dim, and at least 25% of which are
CD31Bright, to differentiate into a progenitor/precursor cell
population (PCP).

There is still further provided, in accordance with an
embodiment of the invention, a method including in vitro
stimulating an initiating cell population (ICP) of at least ten
thousand cells that have a density of less than 1.072 g/ml and
at least 25% of which are CD31Bright to differentiate into a
progenitor/precursor cell population (PCP).

There is yet further provided, in accordance with an
embodiment of the invention, a method including separating
lower density cells from higher density cells, the lower den-
sity cells defining an initiating cell population (ICP) at least
40% of which are CD31Bright, and in vitro stimulating the
ICP to differentiate into a progenitor/precursor cell popula-
tion (PCP).

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including less than or equal to 10% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including less than or equal to 5% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including 5-10% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including less than or equal to 5% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including at least 10% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: anti-Tie-2, anti-CD133, and anti-
CD117.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: anti-Tie-2, anti-CD133, and anti-
CD117, anti-1L-8, anti IL.-8 receptor, IL.-8-antagonist, VEGF,
anti-VEGF, and anti-VEGF receptor.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including I1.-8.

In an embodiment, stimulating the ICP includes culturing
the ICP in the presence of a factor selected from the group
consisting of: anti I1.-8 receptor, IL-8-antagonist, VEGF,
anti-VEGF, and anti-VEGF receptor.

In an embodiment, stimulating the ICP includes culturing
the ICP in the presence of IL-8.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification in the PCP
of CXCRS.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP include CXCRS.

In an embodiment, characterizing the PCP includes cultur-
ing a portion of the PCP on a semi-solid extracellular matrix
(ECM), and identifying in the cultured portion a feature
selected from the group consisting of: a tube-like structure, a
colony, a cluster, and a tendency to migrate towards a
chemoattractant.
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In an embodiment, characterizing the PCP includes cultur-
ing at least a portion of the PCP on a membrane, and identi-
fying a tendency of the at least a portion of the PCP to migrate
toward IL-8.

In an embodiment, the ICP includes at least 5 million cells,
and stimulating the ICP includes stimulating the ICP that
includes the at least 5 million cells.

In an embodiment, at least 1.5% of the cells of the ICP are
CD34+CD45-/Dim, and stimulating the ICP includes stimu-
lating the ICP of which at least 1.5% of the cells are CD34+
CD45-/Dim.

In an embodiment, at least 2% of the cells of the ICP are
CD34+CD45-/Dim, and stimulating the ICP includes stimu-
lating the ICP of which at least 2% of the cells are CD34+
CD45-/Dim.

In an embodiment, at least 30% of the cells of the ICP are
CD31Bright, and stimulating the ICP includes stimulating
the ICP of which at least 30% of the cells are CD31Bright.

In an embodiment, the ICP includes at least 5 million cells
that have a density of less than 1.062 g/ml, at least 1% of
which are CD34+CD45-/Dim, and stimulating the ICP
includes stimulating the ICP that has the at least 5 million
cells that have a density of less than 1.062 g/ml.

In an embodiment, at least 50% of cells in the ICP are
CD31Bright, and stimulating the ICP includes stimulating
the ICP of which at least 50% of cells therein are CD31Bright.

In an embodiment, the method includes preparing the PCP
as a product for administration to a patient. Alternatively or
additionally, the method includes preparing the PCP as a
research tool.

In an embodiment, stimulating the ICP includes only
stimulating the ICP if the ICP is derived from a mammalian
donor.

In an embodiment, the method includes applying cells
extracted from a mammalian donor to one or more gradients
suitable for selecting cells having a density less than 1.072
g/ml, and deriving the ICP from the cells applied to the
gradient.

In an embodiment, the ICP is characterized by atleast2.5%
of'the ICP being CD34+CD45-/Dim, and stimulating the ICP
includes stimulating the ICP having the at least 2.5% of the
ICP that are CD34+CD45-/Dim.

In an embodiment, the ICP is characterized by at least 40%
of the ICP being CD31Bright, and stimulating the ICP
includes stimulating the ICP having the at least 40% of the
ICP that are CD31Bright.

In an embodiment, stimulating the ICP includes stimulat-
ing the ICP to differentiate into a pre-designated, desired
class of progenitor cells.

In an embodiment, the method includes deriving the ICP
from at least one source selected from the group consisting of:
embryonic tissue, fetal tissue, umbilical cord blood, umbili-
cal cord tissue, neonatal tissue, adult tissue, bone marrow,
mobilized blood, peripheral blood, peripheral blood mono-
nuclear cells, skin cells, and plant tissue.

In an embodiment, the method includes deriving the ICP
from at least one source selected from the group consisting of:
fresh tissue and frozen tissue.

In an embodiment, the method includes identifying an
intended recipient of the PCP, and deriving the ICP from at
least one source selected from the group consisting of: tissue
autologous to tissue of the intended recipient, tissue synge-
neic to tissue of the intended recipient, tissue allogeneic to
tissue of the intended recipient, and tissue xenogeneic to
tissue of the intended recipient.

10

15

20

25

30

35

40

45

50

55

60

65

18

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including less than 5% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including at least 10% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: erythropoietin, a statin, and an
antidiabetic agent.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: estrogen, prolactin, progestin, an
adrenocorticoid hormone, ACTH, and cortisone.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: anti-Tie-2, anti-CD133, and anti-
CD117.

In an embodiment, stimulating the ICP includes culturing
the ICP in the presence of a factor selected from the group
consisting of: erythropoietin, a statin, an antidiabetic agent, a
thiazolidinedione, rosiglitazone, a proliferation-differentia-
tion-enhancing agent, anti-CD34, anti-Tie-2, anti-CD133,
anti-CD117, LIF, EPO, IGF, b-FGF, M-CSF, GM-CSF, TGF
alpha, TGF beta, VEGF, BHA, BDNF, GDNF, NGF, NT3,
NT4/5, S-100, CNTF, EGF, NGF3, CFN, ADMIF, estrogen,
prolactin, an adrenocorticoid hormone, ACTH, MCT-165,
glatiramer acetate, a glatiramer acetate-like molecule, IFN
alpha, IFN beta, glutamate, serotonin, acetylcholine, NO,
retinoic acid (RA), heparin, insulin, cortisone, and forskolin.

In an embodiment, the method includes preparing the ICP,
and facilitating a diagnosis responsive to a characteristic of
the preparation of the ICP.

In an embodiment, the method includes freezing the ICP
prior to stimulating the ICP.

In an embodiment, the method includes freezing the PCP.

In an embodiment, the method includes transporting the
ICP to a site at least 10 km from a site where the ICP is first
created, and stimulating the ICP at the remote site.

In an embodiment, the method includes transporting the
PCP to a site at least 10 km from a site where the PCP is first
created.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million PCP cells.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that at least 1.5% of cells of the
PCP demonstrate a feature selected from the group consisting
of: a desired morphology, a desired cellular marker, a desired
cellular component, a desired enzyme, a desired receptor, a
desired genotypic feature, and a desired physiological fea-
ture.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million angiogenic cell precursors (ACPs).

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million cardiomyocyte progenitors.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million neural cell progenitors.
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In an embodiment, the method includes transfecting into
the PCP a gene identified as suitable for gene therapy.

In an embodiment, the method includes transfecting a gene
into the PCP, and subsequently assessing a level of expression
of the gene.

In an embodiment, the method includes transfecting a gene
into the ICP, and subsequently assessing a level of expression
of the gene.

In an embodiment, stimulating the ICP includes culturing
the ICP during a period of between 2 and 120 days.

In an embodiment, stimulating the ICP includes culturing
the ICP during a period of between 3 and 60 days.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including less than 10% serum,
for a duration of between 1 and 120 days.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including at least 10% serum, for
a duration of between 1 and 120 days.

In an embodiment, the method includes characterizing the
PCP as including angiogenic cell precursors (ACPs), in
response to an evaluation of at least a feature selected from the
group consisting of: a phenotypical feature of cells in the PCP,
a genotypical feature of cells in the PCP, and a physiological
feature of cells in the PCP.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an evaluation of at least two
of the features.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an evaluation of each of the
features.

In an embodiment:

the phenotypical feature includes a morphological feature
selected from the group consisting of: a cell size larger than
20 um, an elongated cell, a spindle-shaped cell, an irregu-
larly-shaped cell, a granulated cell, a cell including an
enlarged dark nucleus, a multinuclear cell, a cell including
flagella-like structures, a cell including pseudopodia, and a
cell having a polygonal shape; and

characterizing the PCP includes characterizing the PCP in
response to an evaluation of the selected morphological fea-
ture.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP have the selected
feature.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification in the PCP
of a feature selected from the group consisting of: CD31,
CD31Bright, CD34,CD117,CD133, Tie-2, CD34+CD133+,
KDR, CD34+KDR+, CD144, von Willebrand Factor, SH2
(CD105), SH3, fibronectin, collagen type I, collagen type 111,
collagen type IV, ICAM type 1, ICAM type 2, VCAMI,
vimentin, BMP-R 1A, BMP-RII, CD44, integrin b1, aSM-
actin, MUC18, and CXCR4.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP have the selected
feature.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an assessment of uptake by
the PCP of Ac-LDL.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP demonstrate
uptake of Ac-LDL.

In an embodiment, the PCP includes CD31Bright PCP
cells, and characterizing the PCP includes identifying that at
least 10% ofthe CD31Bright PCP cells demonstrate uptake of
Ac-LDL.
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In an embodiment, characterizing the PCP includes assess-
ing secretion by the PCP of a molecule selected from the
group consisting of: IL-8, angiogenin, VEGF, MMP2, and
MMP9.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP secrete the
selected molecule.

In an embodiment, characterizing the PCP includes cultur-
ing a portion of the PCP on a semi-solid extracellular matrix
(ECM), and identifying in the cultured portion a feature
selected from the group consisting of: a tube-like structure, a
colony, a cluster, and a tendency to migrate towards a
chemoattractant.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells in the cultured portion have
aproperty selected from the group consisting of: formation of
atube-like structure, an ability to form a colony, a cluster, and
a tendency to migrate towards a chemoattractant.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million ACPs.

In an embodiment, the method includes characterizing the
PCP as including a cardiomyocyte (CMC) PCP in response to
an evaluation of a feature selected from the group consisting
of: a phenotypic feature of cells in the PCP, a genotypic
feature on the cells in the PCP, and a physiological feature of
cells in the PCP.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an evaluation of at least two
of the features.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an evaluation of each of the
features.

In an embodiment, the phenotypic feature includes a mor-
phological feature selected from the group consisting of: a
cell size larger than 20 um, an elongated cell, an irregularly-
shaped cell, a granulated cell, a cell including an enlarged
dark nucleus, a multinuclear cell, a cell with dark cytoplasm,
and cells arranged in parallel to each other; and

characterizing the PCP includes characterizing the PCP in
response to an evaluation of the selected morphological fea-
ture.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification in the PCP
of a feature selected from the group consisting of: CD31,
CD117, sarcomeric alpha-actin, beta-actin, alpha-actinin,
desmin, cardiac troponin T, Connexin-43, alpha/beta-MHC,
sarcomeric  alpha-tropomyosin, Troponin I, GATA-4,
Nkx2.5/Csx, MLC-2, and MEF-2.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification of the PCP
as expressing a gene for a factor selected from the group
consisting of: sarcomeric alpha-actin, beta-actin, alpha-acti-
nin, desmin, cardiac troponin T, Connexin-43, alpha/beta-
MHC, sarcomeric alpha-tropomyosin, Troponin I, GATA-4,
Nkx2.5/Csx, MLC-2 and MEF-2.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million CMC progenitors.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP have a charac-
teristic selected from the group consisting of: a CMC-pro-
genitor morphological characteristic, expression of a CMC-
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associated cellular marker, expression of a CMC-progenitor
gene product, and expression of a CMC-progenitor physi-
ological feature.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification in the PCP
of an action in response to activation of the PCP, the action
selected from the group consisting of: increasing intracellular
Ca2+ level, generating membranal electrophysiological
action potentials, and mechanical cellular contraction in
vitro.

In an embodiment, activating the PCP to produce the
selected action, using a technique selected from the group
consisting of: electrical activation of the PCP, and chemical
activation of the PCP.

In an embodiment, the method includes:

assessing a phenotypic aspect of the PCP and a genotypic
aspect of the PCP and a physiological aspect of the PCP; and

designating the PCP as being suitable for implantation in a
patient in response to each of the assessments.

In an embodiment, assessing the phenotypic aspect of the
PCP includes assessing an aspect of the PCP selected from the
group consisting of: morphology of the PCP, a cellular marker
of cells of the PCP, an enzyme of the PCP, a coenzyme of the
PCP, and presence of a designated cellular receptor on cells of
the PCP.

In an embodiment, assessing the genotypic aspect of the
PCP includes assessing an aspect of the PCP selected from the
group consisting of: production of a gene by cells of the PCP,
expression of a gene by cells of the PCP, and generation of a
gene product by cells of the PCP.

In an embodiment, assessing the physiological aspect of
the PCP includes assessing an aspect of the PCP selected from
the group consisting of: secretion of soluble molecules by
cells of the PCP, generation of signals by cells of the PCP,
response by cells of the PCP to signals, and an enzymatic
reaction performed by cells of the PCP.

In an embodiment, the method includes facilitating a diag-
nosis responsive to stimulating the ICP to differentiate into
the PCP.

In an embodiment, facilitating the diagnosis includes
assessing an extent to which the stimulation of the ICP pro-
duces a particular characteristic of the PCP.

In an embodiment, the method includes transfecting a gene
into the ICP prior to stimulating the ICP.

In an embodiment, transfecting the gene includes trans-
fecting into the ICP a gene identified as suitable for gene
therapy.

In an embodiment, the method includes preparing, as a
product for administration to a patient, the PCP generated by
differentiation of the ICP into which the gene has been trans-
fected.

In an embodiment, stimulating the ICP includes incubating
the ICP in a container having a surface including a growth-
enhancing factor.

In an embodiment, the growth-enhancing factor is selected
from the group consisting of: collagen, plasma, fibronectin, a
growth factor, tissue-derived extra cellular matrix, and an
antibody to a stem cell surface receptor.

In an embodiment, stimulating the ICP includes incubating
the ICP in a container with a surface including a growth-
enhancing molecule other than collagen or fibronectin.

In an embodiment, incubating the ICP includes incubating
the ICP in a container having a surface that includes, in
addition to the growth-enhancing molecule, at least one of:
collagen and fibronectin.
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Inan embodiment, the method includes mixing the growth-
enhancing molecule with the at least one of: collagen and
fibronectin.

In an embodiment, the method includes applying to the
surface a layer that includes the growth-enhancing molecule
and a separate layer that includes the at least one of: collagen
and fibronectin.

In an embodiment, stimulating the ICP includes:

during a low-serum time period, culturing the ICP in a
culture medium including less than 10% serum; and

during a high-serum time period, culturing the ICP in a
culture medium including greater than or equal to 10% serum.

In an embodiment, culturing the ICP during the low-serum
time period includes culturing the ICP for a duration of
between 1 and 60 days.

In an embodiment, culturing the ICP during the low-serum
time period includes culturing the ICP for a duration of
between 1 and 5 days.

Inan embodiment, culturing the ICP during the high-serum
time period includes culturing the ICP for a duration of
between 1 and 120 days.

Inan embodiment, culturing the ICP during the high-serum
time period includes culturing the ICP for a duration of
between 1 and 60 days.

In an embodiment, culturing the ICP during the low-serum
time period is performed prior to culturing the ICP during the
high-serum time period.

In an embodiment, culturing the ICP during the low-serum
time period is performed following culturing the ICP during
the high-serum time period.

In an embodiment, the method includes:

during a hypoxic time period lasting at least 2 hours, cul-
turing the ICP under hypoxic conditions; and

during a non-hypoxic time period lasting at least 1 day,
culturing the ICP under non-hypoxic conditions.

In an embodiment, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 30
days, and culturing the ICP under hypoxic conditions
includes culturing the cells under hypoxic conditions during
a first two days of the culturing time period.

In an embodiment, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 30
days, and culturing the ICP under hypoxic conditions
includes culturing the ICP under hypoxic conditions during a
last two days of the culturing time period.

In an embodiment, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 30
days, and culturing the ICP under hypoxic conditions
includes culturing the ICP under hypoxic conditions for at
least 2 hours between a first two days and a last two days of the
culturing time period.

In an embodiment, culturing the ICP under hypoxic con-
ditions is performed prior to culturing the ICP under non-
hypoxic conditions.

In an embodiment, culturing the ICP under hypoxic con-
ditions is performed following culturing the ICP under non-
hypoxic conditions.

In an embodiment, stimulating the ICP includes:

culturing the ICP in a first container during a first portion of
a culturing period;

removing at least some cells of the ICP from the first
container at the end of the first portion of the period; and

culturing, in a second container during a second portion of
the period, the cells removed from the first container.

Inan embodiment, the method includes subsequently to the
step of culturing in the second container:
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culturing the ICP in a primary container during a first
portion of an additional culturing period;

removing at least some cells of the ICP from the primary
container at the end of the first portion of the additional
period; and

culturing, in a secondary container during a second portion
of the additional period, the cells removed from the primary
container.

In an embodiment, stimulating the ICP includes:

culturing the ICP in a first container during a first portion of
a culturing period;

removing cells of the ICP from the first container at the end
of the first portion of the period; and

culturing, in a second container during a second portion of
the period, the cells removed from the first container.

In an embodiment, removing at least some cells of the ICP
includes selecting for removal cells that adhere to a surface of
the first container.

In an embodiment, removing at least some cells of the ICP
includes selecting for removal cells that do not adhere to a
surface of the first container.

In an embodiment, the first container includes on a surface
thereof a growth-enhancing molecule, and culturing the ICP
in the first container includes culturing the ICP in the first
container that includes the growth-enhancing molecule.

In an embodiment, the growth-enhancing molecule is
selected from the group consisting of: collagen, plasma,
fibronectin, a growth factor, tissue-derived extra cellular
matrix and an antibody to a stem cell surface receptor.

In an embodiment, the second container includes on a
surface thereof a growth-enhancing molecule, and culturing
the ICP in the second container includes culturing the ICP in
the second container that includes the growth-enhancing mol-
ecule.

In an embodiment, the growth-enhancing molecule is
selected from the group consisting of: collagen, fibronectin, a
growth factor, and an antibody to a stem cell surface receptor.

In an embodiment, stimulating includes culturing the ICP
with at least one factor derived from a sample tissue.

In an embodiment, the method includes preparing a con-
ditioned medium for culturing the ICP therein, the condi-
tioned medium including the factor, the factor being derived
from the tissue, the tissue being selected from the group
consisting of: peripheral nerve tissue, central nervous system
(CNS) tissue, retinal tissue, pigment epithelial tissue, photo-
receptor tissue, fetal retinal tissue, embryonic retinal tissue,
mature retinal tissue, blood vessel tissue, cardiac tissue, pan-
creatic endocrine tissue, pancreatic exocrine tissue, smooth
muscle tissue, lymphatic tissue, hepatic tissue, lung tissue,
skin tissue, exocrine glandular tissue, mammary gland tissue,
endocrine glandular tissue, thyroid gland tissue, pituitary
gland tissue, and plant tissue.

In an embodiment, stimulating includes co-culturing the
ICP with a sample tissue.

In an embodiment, co-culturing includes preparing the
sample tissue by a method selected from the group consisting
of: slicing the sample tissue, and homogenizing the sample
issue.

In an embodiment, co-culturing includes:

utilizing the sample tissue to produce a conditioned
medium; and

co-culturing the ICP with the sample tissue in the condi-
tioned medium.

In an embodiment, co-culturing includes separating the
sample tissue from the ICP by a semi-permeable membrane.

In an embodiment, designating the sample tissue to include
a tissue selected from the group consisting of: peripheral
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nerve tissue, central nervous system (CNS) tissue, retinal
tissue, pigment epithelial tissue, photoreceptor tissue, fetal
retinal tissue, embryonic retinal tissue, mature retinal tissue,
blood vessel tissue, cardiac tissue, pancreatic endocrine tis-
sue, pancreatic exocrine tissue, smooth muscle tissue, lym-
phatic tissue, hepatic tissue, lung tissue, skin tissue, exocrine
glandular tissue, mammary gland tissue, endocrine glandular
tissue, thyroid gland tissue, pituitary gland tissue, and plant
tissue.

In an embodiment, the method includes systemically
administering the PCP to a patient.

In an embodiment, the method includes locally adminis-
tering the PCP to a site of the patient including injured tissue.

In an embodiment, locally administering the PCP includes
implanting at the site a device including the PCP.

In an embodiment, the device includes at least one item
selected from the group consisting of: a metal, a plastic, a
glass, and a biodegradable element, and implanting the device
includes implanting the device including the selected item.

In an embodiment, the method includes using the device to
enable increased survival of PCP in injured tissue

In an embodiment, the method includes configuring the
device for slow release of cells of the PCP into the injured
tissue.

In an embodiment, the method includes secreting, from the
PCP, therapeutic molecules to the tissue.

In an embodiment, the method includes secreting, from the
device, soluble molecules that support the PCP.

There is also provided, in accordance with an embodiment
of the invention, apparatus for implantation in a patient,
including a medical device including a PCP produced accord-
ing to any of the procedures described herein for producing a
PCP.

In an embodiment, the medical device includes a chamber
having the PCP disposed therein, and a membrane, through
which molecules generated by the PCP are able to pass.

There is further provided, in accordance with an embodi-
ment of the invention, a method including in vitro stimulating
an initiating cell population (ICP) of at least 5 million cells
that have a density of less than 1.072 g/ml, and at least 1% of
which are CD34+CD45-/Dim, to differentiate into a progeni-
tor/precursor cell population (PCP).

There is also provided, in accordance with an embodiment
of the invention, a method including in vitro stimulating an
initiating cell population (ICP) of at least ten thousand cells
that have a density of less than 1.072 g/ml to differentiate into
a progenitor/precursor cell population (PCP).

There is further provided, in accordance with an embodi-
ment of the invention, a method including separating lower
density cells from higher density cells, the lower density cells
defining an initiating cell population (ICP), and in vitro
stimulating the ICP to differentiate into a progenitor/precur-
sor cell population (PCP).

In an embodiment, the ICP includes at least 5 million cells,
and wherein stimulating the ICP includes stimulating the ICP
that includes the at least 5 million cells.

In an embodiment, at least 1.5% of the cells of the ICP are
CD34+CD45-/Dim, and wherein stimulating the ICP
includes stimulating the ICP of which at least 1.5% of the
cells are CD34+CD45-/Dim.

In an embodiment, at least 2% of the cells of the ICP are
CD34+CD45-/Dim, and wherein stimulating the ICP
includes stimulating the ICP of which at least 2% of the cells
are CD34+CD45-/Dim.
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In an embodiment, at least 30% of the cells of the ICP are
CD31Bright, and wherein stimulating the ICP includes
stimulating the ICP of which at least 30% of the cells are
CD34+CD45-/Dim.

In an embodiment, the ICP includes at least 5 million cells
that have a density of less than 1.062 g/ml, at least 1% of
which are CD34+CD45-/Dim, and wherein stimulating the
ICP includes stimulating the ICP that has the atleast 5 million
cells that have a density of less than 1.062 g/ml.

In an embodiment, at least 50% of cells in the ICP are
CD31Bright, and wherein stimulating the ICP includes
stimulating the ICP of which at least 50% of cells therein are
CD31Bright.

In an embodiment, the method includes preparing the PCP
as a product for administration to a patient.

In an embodiment, the method includes preparing the PCP
as a research tool.

In an embodiment, stimulating the ICP includes only
stimulating the ICP if the ICP is derived from a mammalian
donor.

In an embodiment, the method includes applying cells
extracted from a mammalian donor to one or more gradients
suitable for selecting cells having a density less than 1.072
g/ml, and deriving the ICP from the cells applied to the
gradient.

In an embodiment, the ICP is characterized by atleast2.5%
of the ICP being CD34+CD45-/Dim, and wherein stimulat-
ing the ICP includes stimulating the ICP having the at least
2.5% of the ICP that are CD34+CD45-/Dim.

In an embodiment, the ICP is characterized by at least 50%
of the ICP being CD31Bright, and wherein stimulating the
ICP includes stimulating the ICP having the at least 50% of
the ICP that are CD31Bright.

In an embodiment, the ICP is characterized by at least 40%
of the ICP being CD31Bright, and wherein stimulating the
ICP includes stimulating the ICP having the at least 40% of
the ICP that are CD31Bright.

In an embodiment, stimulating the ICP includes stimulat-
ing the ICP to differentiate into a pre-designated, desired
class of progenitor cells.

In an embodiment, the method includes deriving the ICP
from at least one source selected from the group consisting of:
embryonic tissue, fetal tissue, umbilical cord blood, umbili-
cal cord tissue, neonatal tissue, adult tissue, bone marrow,
mobilized blood, peripheral blood, peripheral blood mono-
nuclear cells, skin cells, and plant tissue.

In an embodiment, the method includes deriving the ICP
from at least one source selected from the group consisting of:
fresh tissue and frozen tissue.

In an embodiment, the method includes identifying an
intended recipient of the PCP, and deriving the ICP from at
least one source selected from the group consisting of: tissue
autologous to tissue of the intended recipient, tissue synge-
neic to tissue of the intended recipient, tissue allogeneic to
tissue of the intended recipient, and tissue xenogeneic to
tissue of the intended recipient.

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including less than 5% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP for a period lasting between 1 and 5 days in a culture
medium including at least 10% serum.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: erythropoietin, a statin, and an
antidiabetic agent.
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In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: estrogen, prolactin, progestin, an
adrenocorticoid hormone, ACTH, and cortisone.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including a factor selected from
the group consisting of: anti-Tie-2, anti-CD133, and anti-
CD117.

In an embodiment, stimulating the ICP includes culturing
the ICP in the presence of a factor selected from the group
consisting of: erythropoietin, a statin, an antidiabetic agent, a
thiazolidinedione, rosiglitazone, a proliferation-differentia-
tion-enhancing agent, anti-CD34, anti-Tie-2, anti-CD133,
anti-CD117, LIF, EPO, IGF, b-FGF, M-CSF, GM-CSF, TGF
alpha, TGF beta, VEGF, BHA, BDNF, GDNF, NGF, NT3,
NT4/5, S-100, CNTF, EGF, NGF3, CFN, ADMIF, estrogen,
prolactin, an adrenocorticoid hormone, ACTH, MCT-165,
glatiramer acetate, a glatiramer acetate-like molecule, IFN
alpha, IFN beta or any other immunoregulatory agent,
glutamate, serotonin, acetylcholine, NO, retinoic acid (RA)
or any other vitamin D derivative, heparin, insulin, and for-
skolin, cortisone.

In an embodiment, the method includes preparing the ICP,
and facilitating a diagnosis responsive to a characteristic of
the preparation of the ICP.

In an embodiment, the method includes freezing the ICP
prior to stimulating the ICP.

In an embodiment, the method includes freezing the PCP.

In an embodiment, the method includes transporting the
ICP to a site at least 10 km from a site where the ICP is first
created, and stimulating the ICP at the remote site.

In an embodiment, the method includes transporting the
PCP to a site at least 10 km from a site where the PCP is first
created.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million PCP cells.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that at least 1.5% of cells of the
PCP demonstrate a feature selected from the group consisting
of: a desired morphology, a desired cellular marker, a desired
cellular component, a desired enzyme, a desired receptor, a
desired genotypic feature, and a desired physiological fea-
ture.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million angiogenic cell precursors (ACPs).

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million cardiomyocyte progenitors.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million neural cell progenitors.

In an embodiment, the method includes transfecting into
the PCP a gene identified as suitable for gene therapy.

In an embodiment, the method includes transfecting a gene
into the PCP, and subsequently assessing a level of expression
of the gene.

In an embodiment, the method includes transfecting a gene
into the ICP, and subsequently assessing a level of expression
of the gene.
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In an embodiment, stimulating the ICP includes culturing
the ICP during a period of between 2 and 120 days.

In an embodiment, stimulating the ICP includes culturing
the ICP during a period of between 3 and 60 days.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including less than 10% serum,
for a duration of between 1 and 120 days.

In an embodiment, stimulating the ICP includes culturing
the ICP in a culture medium including at least 10% serum, for
a duration of between 1 and 120 days.

In an embodiment, the method includes characterizing the
PCP as including angiogenic cell precursors (ACPs), in
response to an evaluation of at least a feature selected from the
group consisting of: a phenotypical feature of cells in the PCP,
a genotypical feature of cells in the PCP, and a physiological
feature of cells in the PCP.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an evaluation of at least two
of the features.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an evaluation of each of the
features.

In an embodiment:

the phenotypical feature includes a morphological feature
selected from the group consisting of: a cell size larger than
20 m, an elongated cell, a spindle-shaped cell, an irregularly-
shaped cell, a granulated cell, a cell including an enlarged
dark nucleus, a multinuclear cell, a cell including flagella-like
structures, a cell including pseudopodia, and a cell having a
polygonal shape; and

characterizing the PCP includes characterizing the PCP in
response to an evaluation of the selected morphological fea-
ture.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP have the selected
feature.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification in the PCP
of a feature seclected from the group consisting of:
CD31Bright, CD34,CD117,CD133, Tie-2, CD34+CD133+,
KDR, CD34+KDR+, CD144, von Willebrand Factor, SH2
(CD105), SH3, fibronectin, collagen type I, collagen type 111,
collagen type IV, ICAM type 1, ICAM type 2, VCAMI,
vimentin, BMP-R 1A, BMP-RII, CD44, integrin b1, aSM-
actin, MUC18, and CXCR4.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP have the selected
feature.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an assessment of uptake by
the PCP of Ac-LDL.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP demonstrate
uptake of Ac-LDL.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells that are CD31Bright dem-
onstrate uptake of Ac-LDL.

In an embodiment, characterizing the PCP includes assess-
ing secretion by the PCP of a molecule selected from the
group consisting of: IL-8, angiogenin, VEGF, MMP2, and
MMP9.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP secrete the
selected molecule.

In an embodiment, characterizing the PCP includes cultur-
ing a portion of the PCP on a semi-solid extracellular matrix
(ECM), and identifying in the cultured portion a feature
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selected from the group consisting of: a tube-like structure, a
colony, a cluster, and a tendency to migrate towards a
chemoattractant.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells in the cultured portion have
aproperty selected from the group consisting of: formation of
atube-like structure, an ability to form a colony, a cluster, and
a tendency to migrate towards a chemoattractant.

In an embodiment, the method includes including identi-
fying the PCP as being suitable for therapeutic implantation
in response to an assessment that the PCP includes at least 1
million ACPs.

In an embodiment, the method includes characterizing the
PCP as including a cardiomyocyte (CMC) PCP in response to
an evaluation of a feature selected from the group consisting
of: a phenotypic feature of cells in the PCP, a genotypic
feature on the cells in the PCP, and a physiological feature of
cells in the PCP.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an evaluation of at least two
of the features.

In an embodiment, the method includes characterizing the
PCP includes characterizing the PCP in response to an evalu-
ation of each of the features.

In an embodiment, the phenotypic feature includes a mor-
phological feature selected from the group consisting of: a
cell size larger than 20 m, an elongated cell, an irregularly-
shaped cell, a granulated cell, a cell including an enlarged
dark nucleus, a multinuclear cell, a cell with dark cytoplasm,
and cells arranged in parallel to each other; and

wherein characterizing the PCP includes characterizing the
PCP in response to an evaluation of the selected morphologi-
cal feature.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification in the PCP
of a feature selected from the group consisting of: CD31,
CD117, sarcomeric alpha-actin, beta-actin, alpha-actinin,
desmin, cardiac troponin T, Connexin-43, alpha/beta-MHC,
sarcomeric  alpha-tropomyosin, Troponin I, GATA-4,
Nkx2.5/Csx, MLC-2, and MEF-2.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification of the PCP
as expressing a gene for a factor selected from the group
consisting of: sarcomeric alpha-actin, beta-actin, alpha-acti-
nin, desmin, cardiac troponin T, Connexin-43, alpha/beta-
MHC, sarcomeric, alpha-tropomyosin, Troponin I, GATA-4,
Nkx2.5/Csx, MLC-2 and MEF-2.

In an embodiment, the method includes identifying the
PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million CMC progenitors.

In an embodiment, characterizing the PCP includes iden-
tifying that at least 1.5% of cells of the PCP have a charac-
teristic selected from the group consisting of: a CMC-pro-
genitor morphological characteristic, expression of a CMC-
associated cellular marker, expression of a CMC-progenitor
gene product, and expression of a CMC-progenitor physi-
ological feature.

In an embodiment, characterizing the PCP includes char-
acterizing the PCP in response to an identification in the PCP
of an action in response to activation of the PCP, the action
selected from the group consisting of: increasing intracellular
Ca2+ level, generating membranal electrophysiological
action potentials, and mechanical cellular contraction in
vitro.

In an embodiment, the method includes activating the PCP
to produce the selected action, using a technique selected
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from the group consisting of: electrical activation of the PCP,
and chemical activation of the PCP.

In an embodiment, the method includes:

assessing a phenotypic aspect of the PCP and a genotypic
aspect of the PCP and a physiological aspect of the PCP; and

designating the PCP as being suitable for implantation in a
patient in response to each of the assessments.

In an embodiment, assessing the phenotypic aspect of the
PCP includes assessing an aspect of the PCP selected from the
group consisting of: morphology of the PCP, a cellular marker
of cells of the PCP, an enzyme of the PCP, a coenzyme of the
PCP, and presence of a designated cellular receptor on cells of
the PCP.

In an embodiment, assessing the genotypic aspect of the
PCP includes assessing an aspect of the PCP selected from the
group consisting of: production of a gene by cells of the PCP,
expression of a gene by cells of the PCP, and generation of a
gene product by cells of the PCP.

In an embodiment, assessing the physiological aspect of
the PCP includes assessing an aspect of the PCP selected from
the group consisting of: secretion of soluble molecules by
cells of the PCP, generation of signals by cells of the PCP,
response by cells of the PCP to signals, and an enzymatic
reaction performed by cells of the PCP.

In an embodiment, the method includes facilitating a diag-
nosis responsive to stimulating the ICP to differentiate into
the PCP.

In an embodiment, facilitating the diagnosis includes
assessing an extent to which the stimulation of the ICP pro-
duces a particular characteristic of the PCP.

In an embodiment, the method includes transfecting a gene
into the ICP prior to stimulating the ICP.

In an embodiment, transfecting the gene includes trans-
fecting into the ICP a gene identified as suitable for gene
therapy.

In an embodiment, the method includes preparing, as a
product for administration to a patient, the PCP generated by
differentiation of the ICP into which the gene has been trans-
fected.

In an embodiment, the method includes stimulating the
ICP includes incubating the ICP in a container having a
surface including a growth-enhancing factor.

In an embodiment, the method includes the growth-en-
hancing factor is selected from the group consisting of: col-
lagen, plasma, fibronectin, a growth factor, tissue-derived
extra cellular matrix, and an antibody to a stem cell surface
receptor.

In an embodiment, stimulating the ICP includes incubating
the ICP in a container with a surface including a growth-
enhancing molecule other than collagen or fibronectin.

In an embodiment, incubating the ICP includes incubating
the ICP in a container having a surface that includes, in
addition to the growth-enhancing molecule, at least one of:
collagen and fibronectin.

Inan embodiment, the method includes mixing the growth-
enhancing molecule with the at least one of: collagen and
fibronectin.

In an embodiment, the method includes applying to the
surface a layer that includes the growth-enhancing molecule
and a separate layer that includes the at least one of: collagen
and fibronectin.

In an embodiment, stimulating the ICP includes:

during a low-serum time period, culturing the ICP in a
culture medium including less than 10% serum; and

during a high-serum time period, culturing the ICP in a
culture medium including greater than or equal to 10% serum.
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In an embodiment, culturing the ICP during the low-serum
time period includes culturing the ICP for a duration of
between 1 and 60 days.

In an embodiment, culturing the ICP during the low-serum
time period includes culturing the ICP for a duration of
between 1 and 5 days.

Inan embodiment, culturing the ICP during the high-serum
time period includes culturing the ICP for a duration of
between 1 and 120 days.

Inan embodiment, culturing the ICP during the high-serum
time period includes culturing the ICP for a duration of
between 1 and 60 days.

In an embodiment, culturing the ICP during the low-serum
time period is performed prior to culturing the ICP during the
high-serum time period.

In an embodiment, culturing the ICP during the low-serum
time period is performed following culturing the ICP during
the high-serum time period.

In an embodiment, the method includes:

during a hypoxic time period lasting at least 2 hours, cul-
turing the ICP under hypoxic conditions; and

during a non-hypoxic time period lasting at least 1 day,
culturing the ICP under non-hypoxic conditions.

In an embodiment, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 30
days, and wherein culturing the ICP under hypoxic conditions
includes culturing the cells under hypoxic conditions during
a first two days of the culturing time period.

In an embodiment, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 30
days, and wherein culturing the ICP under hypoxic conditions
includes culturing the ICP under hypoxic conditions during a
last two days of the culturing time period.

In an embodiment, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 30
days, and wherein culturing the ICP under hypoxic conditions
includes culturing the ICP under hypoxic conditions for at
least 2 hours between a first two days and a last two days of the
culturing time period.

In an embodiment, culturing the ICP under hypoxic con-
ditions is performed prior to culturing the ICP under non-
hypoxic conditions.

In an embodiment, culturing the ICP under hypoxic con-
ditions is performed following culturing the ICP under non-
hypoxic conditions.

In an embodiment, stimulating the ICP includes:

culturing the ICP in a first container during a first portion of
a culturing period;

removing at least some cells of the ICP from the first
container at the end of the first portion of the period; and

culturing, in a second container during a second portion of
the period, the cells removed from the first container.

In an embodiment, the method includes, subsequently to
the step of culturing in the second container:

culturing the ICP in a primary container during a first
portion of an additional culturing period;

removing at least some cells of the ICP from the primary
container at the end of the first portion of the additional
period; and

culturing, in a secondary container during a second portion
of the additional period, the cells removed from the primary
container.

In an embodiment, stimulating the ICP includes:

culturing the ICP in a first container during a first portion of
a culturing period;

removing cells of the ICP from the first container at the end
of' the first portion of the period; and
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culturing, in a second container during a second portion of
the period, the cells removed from the first container.

In an embodiment, removing at least some cells of the ICP
includes selecting for removal cells that adhere to a surface of
the first container.

In an embodiment, removing at least some cells of the ICP
includes selecting for removal cells that do not adhere to a
surface of the first container.

In an embodiment, the first container includes on a surface
thereof a growth-enhancing molecule, and wherein culturing
the ICP in the first container includes culturing the ICP in the
first container that includes the growth-enhancing molecule.

In an embodiment, the growth-enhancing molecule is
selected from the group consisting of: collagen, plasma,
fibronectin, a growth factor, tissue-derived extra cellular
matrix and an antibody to a stem cell surface receptor.

In an embodiment, the second container includes on a
surface thereof a growth-enhancing molecule, and wherein
culturing the ICP in the second container includes culturing
the ICP in the second container that includes the growth-
enhancing molecule.

In an embodiment, the growth-enhancing molecule is
selected from the group consisting of: collagen, fibronectin, a
growth factor, and an antibody to a stem cell surface receptor.

In an embodiment, stimulating includes culturing the ICP
with at least one factor derived from a sample tissue.

In an embodiment, the method includes preparing a con-
ditioned medium for culturing the ICP therein, the condi-
tioned medium including the factor, the factor being derived
from the tissue, the tissue being selected from the group
consisting of: peripheral nerve tissue, central nervous system
(CNS) tissue, retinal tissue, pigment epithelial tissue, photo-
receptor tissue, fetal retinal tissue, embryonic retinal tissue,
mature retinal tissue, blood vessel tissue, cardiac tissue, pan-
creatic endocrine tissue, pancreatic exocrine tissue, smooth
muscle tissue, lymphatic tissue, hepatic tissue, lung tissue,
skin tissue, exocrine glandular tissue, mammary gland tissue,
endocrine glandular tissue, thyroid gland tissue, pituitary
gland tissue, and plant tissue.

In an embodiment, stimulating includes co-culturing the
ICP with a sample tissue.

In an embodiment, co-culturing includes preparing the
sample tissue by a method selected from the group consisting
of: slicing the sample tissue, and homogenizing the sample
issue.

In an embodiment, co-culturing includes:

utilizing the sample tissue to produce a conditioned
medium; and

co-culturing the ICP with the sample tissue in the condi-
tioned medium.

In an embodiment, co-culturing includes separating the
sample tissue from the ICP by a semi-permeable membrane.

In an embodiment, the method includes designating the
sample tissue to include a tissue selected from the group
consisting of: peripheral nerve tissue, central nervous system
(CNS) tissue, retinal tissue, pigment epithelial tissue, photo-
receptor tissue, fetal retinal tissue, embryonic retinal tissue,
mature retinal tissue, blood vessel tissue, cardiac tissue, pan-
creatic endocrine tissue, pancreatic exocrine tissue, smooth
muscle tissue, lymphatic tissue, hepatic tissue, lung tissue,
skin tissue, exocrine glandular tissue, mammary gland tissue,
endocrine glandular tissue, thyroid gland tissue, pituitary
gland tissue, and plant tissue.
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There is further provided, in accordance with an embodi-
ment of the invention, a method for treating a patient, includ-
ing:

identifying a patient having a sexual dysfunction; and

administering angiogenic cell precursors to the patient, in
order to treat the dysfunction.

There is also provided, in accordance with an embodiment
of the present invention, a method including in vitro stimu-
lating a core cell population (CCP) of at least 5 million cells
that have a density of less than 1.072 g/ml, and at least 1% or
at least 2% of which are CD34+CD45-/Dim, to differentiate
into a progenitor/precursor cell population (PCP).

For some applications, the CCP includes at least 5 million
cells that have a density ofless than 1.062 g/ml, at least 2% of
which are CD34+CD45-/Dim, and stimulating the CCP
includes stimulating the CCP that has the at least 5 million
cells that have a density of less than 1.062 g/ml.

For some applications, the method includes preparing the
PCP as a product for administration to a patient. Alternatively,
the method includes preparing the PCP as a research tool or a
diagnostic tool.

For some applications, stimulating the CCP includes only
stimulating the CCP if the CCP is derived from a mammalian
donor. For some applications, the method includes applying
cells extracted from a mammalian donor to one or more
gradients suitable for selecting cells having a density less than
1.072 g/ml, and deriving the CCP from the cells applied to the
gradient.

For some applications, the CCP is characterized by at least
2.5% of the CCP being CD34+CD45-/Dim, and stimulating
the CCP includes stimulating the CCP having the at least
2.5% of the CCP that are CD34+CD45-/Dim. For some
applications, the CCP is characterized by at least 50% of the
CCP being CD31Bright, and stimulating the CCP includes
stimulating the CCP having the at least 50% of the CCP that
are CDC31Bright+. For some applications, the CCP is char-
acterized by at least 40% of the CCP being CD31Bright, and
stimulating the CCP includes stimulating the CCP having the
at least 40% of the CCP that are CD31Bright.

For some applications, stimulating the CCP includes
stimulating the CCP to differentiate into a pre-designated,
desired class of progenitor cells.

For some applications, stimulating the CCP includes cul-
turing the CCP during a period of between 3 and 30, 60, or 120
days.

For some applications, the method includes deriving the
CCP from at least one source selected from the group con-
sisting of: embryonic tissue, fetal tissue, umbilical cord
blood, umbilical cord tissue, neonatal tissue, adult tissue,
bone marrow, mobilized blood, peripheral blood, peripheral
blood mononuclear cells, skin cells, and plant tissue. Alter-
natively, the method includes deriving the CCP from at least
one source selected from the group consisting of: fresh tissue
and frozen tissue. For some applications, the method includes
identifying an intended recipient of the PCP, and deriving the
CCP from at least one source selected from the group con-
sisting of: tissue autologous to tissue of the intended recipi-
ent, tissue syngeneic to tissue of the intended recipient, tissue
allogeneic to tissue of the intended recipient, and tissue xeno-
geneic to tissue of the intended recipient.

For some applications, stimulating the CCP includes incu-
bating the CCP in a container having a surface including an
antibody.

For some applications, stimulating the CCP includes incu-
bating the CCP in a container having a surface including a
plasma.
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For some applications, stimulating the CCP includes cul-
turing the CCP for a period lasting between 1 and 5, 10, or 20
days in a culture medium including less than 5% serum. For
some applications, stimulating the CCP includes culturing
the CCP for a period lasting between 1 and 5, 10, or 20 days
in a culture medium including at least 10% serum.

For some applications, stimulating the CCP includes cul-
turing the CCP in the presence of at least one of the following:
erythropoietin, a statin, an antidiabetic agent, a thiazo-
lidinedione, rosiglitazone, a proliferation-differentiation-en-
hancing agent, anti-CD34, anti-Tie-2, anti-CD133, anti-
CD117, LIF, EPO, IGF, b-FGF, M-CSF, GM-CSF, TGF
alpha, TGF beta, VEGF, BHA, BDNF, NGF, NT3, NT4/5,
GDNF, S-100, CNTF, EGF, NGF3, CFN, ADMTIF, prolactin,
an adrenocorticoid hormone, ACTH, glutamate, serotonin,
acetylcholine, NO, retinoic acid (RA) or any other vitamin D
derivative, heparin, insulin, forskolin, cortisone, cortisol,
dexamethasone, estrogen, a steroid, MCDB-201, MCT-165,
glatiramer acetate, a glatiramer acetate-like molecule, IFN
alpha, IFN beta or any other immunoregulatory agent, sodium
selenite, linoleic acid, ascorbic acid, transferrin, 5-azacyti-
dine, PDGF, VEGF, cardiotrophin, and thrombin.

For some applications, the method includes preparing the
CCP, and facilitating a diagnosis responsive to a characteris-
tic of the preparation of the CCP.

For some applications, the method includes freezing the
CCP prior to stimulating the CCP. For some applications, the
method includes freezing the PCP.

For some applications, the method includes transporting
the CCP to a site at least 10 km from a site where the CCP is
first created, and stimulating the CCP at the remote site. For
some applications, the method includes transporting the PCP
to a site at least 10 km from a site where the PCP is first
created.

In an embodiment, the method includes facilitating a diag-
nosis responsive to stimulating the CCP to differentiate into
the PCP. For some applications, facilitating the diagnosis
includes assessing an extent to which the stimulation of the
CCP produces a particular characteristic of the PCP.

In an embodiment, the method includes transfecting a gene
into the CCP prior to stimulating the CCP. For some applica-
tions, the method includes preparing, as a product for admin-
istration to a patient, the PCP generated by differentiation of
the CCP into which the gene has been transfected.

In an embodiment, the method includes transfecting a gene
into the PCP prior to administration of the PCP to a patient.

In an embodiment, stimulating the CCP includes incubat-
ing the CCP in a container with a surface including a growth-
enhancing molecule other than collagen or fibronectin. For
some applications, incubating the CCP cells includes incu-
bating the CCP in a container having a surface that includes,
in addition to the growth-enhancing molecule, at least one of:
collagen, plasma and fibronectin. For some applications, the
method includes mixing the growth-enhancing molecule with
the atleast one of: collagen, plasma and fibronectin. For some
applications, the method includes applying to the surface a
layer that includes the growth-enhancing molecule and a
separate layer that includes the at least one of: collagen,
plasma and fibronectin.

In an embodiment, stimulating the CCP includes:

during a low-serum time period, culturing the CCP in a
culture medium including less than 10% serum; and

during a high-serum time period, culturing the CCP in a
culture medium including greater than or equal to 10% serum.

For some applications, culturing the CCP during the low-
serum time period includes culturing the CCP for a duration
of'between 1 and 5 or 20 days. For some applications, cultur-
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ing the CCP during the high-serum time period includes
culturing the CCP for a duration of between 1 and 30, 60, or
120 days. For some applications, culturing the CCP during
the low-serum time period is performed prior to culturing the
CCP during the high-serum time period. For some applica-
tions, culturing the CCP during the low-serum time period is
performed following culturing the CCP during the high-se-
rum time period.

In an embodiment, the method includes:

during a hypoxic time period lasting at least 2 hours, cul-
turing the CCP under hypoxic conditions; and

during a non-hypoxic time period lasting at least 1 day,
culturing the CCP under non-hypoxic conditions.

For some applications, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 120
days (e.g., less than 30 days), and culturing the CCP under
hypoxic conditions includes culturing the cells under hypoxic
conditions during a first two days of the culturing time period.
For some applications, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 120
days (e.g., less than 30 days), and culturing the CCP under
hypoxic conditions includes culturing the CCP under hypoxic
conditions during a last two days of the culturing time period.
For some applications, the hypoxic and non-hypoxic time-
periods are within a culturing time period lasting less than 120
days (e.g., less than 30 days), and culturing the CCP under
hypoxic conditions includes culturing the CCP under hypoxic
conditions for at least 2 hours between a first two days and a
last two days of the culturing time period.

For some applications, culturing the CCP under hypoxic
conditions is performed prior to culturing the CCP under
non-hypoxic conditions. Alternatively, culturing the CCP
under hypoxic conditions is performed following culturing
the CCP under non-hypoxic conditions.

In an embodiment, stimulating the CCP includes:

culturing the CCP in a first container during a first portion
of a culturing period;

removing all or at least some cells of the CCP from the first
container at the end of the first portion of the period; and

culturing, in a second container during a second portion of
the period, the cells removed from the first container.

For some applications, removing at least some cells of the
CCP includes selecting for removal cells that adhere to a
surface ofthe first container. For some applications, removing
at least some cells of the CCP includes selecting for removal
cells that do not adhere to a surface of the first container.

For some applications, the first container includes on a
surface thereof a growth-enhancing molecule, and culturing
the CCP in the first container includes culturing the CCP in
the first container that includes the growth-enhancing mol-
ecule.

For some applications, the growth-enhancing molecule is
selected from the group consisting of: collagen, plasma,
fibronectin, a growth factor, tissue-derived extra cellular
matrix and an antibody to a stem cell surface receptor.

For some applications, the second container includes on a
surface thereof a growth-enhancing molecule, and culturing
the CCP in the second container includes culturing the CCP in
the second container that includes the growth-enhancing mol-
ecule.

For some applications, the growth-enhancing molecule is
selected from the group consisting of: collagen, plasma,
fibronectin, a growth factor, tissue-derived extra cellular
matrix and an antibody to a stem cell surface receptor.

In an embodiment, stimulating includes culturing the CCP
with at least one factor derived from a target tissue. For some
applications, the method includes preparing a conditioned
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medium for culturing the CCP therein, the conditioned
medium including the factor, the factor being derived from a
tissue selected from the group consisting of: peripheral nerve
tissue, central nervous system (CNS) tissue, retinal tissue,
pigment epithelial tissue, photoreceptor tissue, fetal retinal
tissue, embryonic retinal tissue, mature retinal tissue, blood
vessel tissue, cardiac tissue, pancreatic endocrine tissue, pan-
creatic exocrine tissue, smooth muscle tissue, lymphatic tis-
sue, hepatic tissue, lung tissue, skin tissue, exocrine glandular
tissue, mammary gland tissue, endocrine glandular tissue,
thyroid gland tissue, pituitary gland tissue, and plant tissue.

In an embodiment, stimulating includes co-culturing the
CCP with a tissue. For some applications, co-culturing
includes preparing a target tissue by a method selected from
the group consisting of: slicing the target tissue, and homog-
enizing the target issue. For some applications, co-culturing
includes utilizing the target tissue to produce a conditioned
medium, and co-culturing the CCP with the target tissue in
the conditioned medium. For some applications, co-culturing
includes separating the target tissue from the CCP by a semi-
permeable membrane.

For some applications, the method includes designating a
tissue for co-culture purposes to include a tissue selected
from the group consisting of: peripheral nerve tissue, central
nervous system (CNS) tissue, retinal tissue, pigment epithe-
lial tissue, photoreceptor tissue, fetal retinal tissue, embry-
onic retinal tissue, mature retinal tissue, blood vessel tissue,
cardiac tissue, pancreatic endocrine tissue, pancreatic exo-
crine tissue, smooth muscle tissue, lymphatic tissue, hepatic
tissue, lung tissue, skin tissue, exocrine glandular tissue,
mammary gland tissue, endocrine glandular tissue, thyroid
gland tissue, pituitary gland tissue, and plant tissue.

There is also provided, in accordance with an embodiment
of the present invention, a method including in vitro stimu-
lating an elemental cell population (ECP) of at least 5 million
cells that have a density of less than 1.072 g/ml, at least 1.5%
of which are CD34+CD45-/Dim, and at least 30% of which
are CD31Bright, to differentiate into a progenitor/precursor
cell population (PCP).

For some applications, the present invention includes treat-
ing a patient with a PCP administrated systemically.

For some applications, the present invention includes treat-
ing a patient with a PCP administrated locally to injured
tissue.

There is also provided, in accordance with an embodiment
of the present invention, a method for treating a patient
including administering a PCP using an implantable medical
device, which, in an embodiment, includes metal, plastic,
glass, or another material, and which for some applications is
biodegradable. As appropriate for a given application, the
medical device may include a stent, microparticles, or micro-
capsules.

There is also provided, in accordance with an embodiment
of the present invention, a method comprising implanting, at
a site including injured tissue, a medical device including a
PCP, to enable increased survival at the site of the PCP.

There is also provided, in accordance with an embodiment
of'the present invention, a method including a medical device
that provides slow release of a PCP into injured tissue.

There is also provided, in accordance with an embodiment
of the present invention, a method including coupling a PCP
to amedical device, wherein the PCP is adapted to be a source
of therapeutic soluble molecules to a subject in whom the
medical device is implanted. For some applications, appara-
tus comprises a chamber having disposed therein a popula-
tion of stem cells (e.g., a PCP produced using techniques
described herein), the chamber being surrounded by a semi-
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permeable membrane. Therapeutic molecules leave the
chamber through the membrane, and treat the patient. As
appropriate, techniques and apparatus described in the above-
referenced US Patent Application Publication 2005/0209556
to Tresco and article by Rehman may be practiced in combi-
nation with this embodiment, mutatis mutandis.

There is also provided, in accordance with an embodiment
of'the present invention, a method including attaching a PCP
to a medical device, wherein the medical device is a source of
soluble molecules that support the PCP.

There is additionally provided, in accordance with an
embodiment of the present invention, a composition of mat-
ter, including a population of cultured cells that includes a
sub-population of cells that both stain as CD31Bright and
demonstrate uptake of Ac-LDL+.

In an embodiment, the sub-population secretes IL.-8.

In an embodiment, the sub-population secretes at least 50
pg IL-8 per 106 cells/ml over a period of at least 24 hours.

In an embodiment, the sub-population secretes at least 150
pg IL-8 per 106 cells/ml over a period of at least 24 hours.

In an embodiment, the sub-population secretes at least
1000 pg per 106 cells/ml over a period of at least 24 hours.

In an embodiment, at least 1.5% of the cells of the popu-
lation secrete a molecule selected from the group consisting
of: IL-8, angiogenin, VEGF, MMP2, and MMP9.

In an embodiment, at least 1.5% of the cells of the popu-
lation have a tendency to migrate toward a chemoattractant
selected from the group consisting of: bFGF, VEGF, SCF,
G-CSF, GM-CSF, SDF-1, and IL-8.

There is further provided, in accordance with an embodi-
ment of the present invention, a composition of matter,
including a population of cultured cells that includes a sub-
population of cells that stain as CD31Bright, demonstrate
uptake of Ac-LDL+ and secrete interleukin-8.

In an embodiment, the sub-population includes at least
10% of the cells in the population.

In an embodiment, the sub-population includes at least
25% of the cells in the population.

In an embodiment, the sub-population includes at least
50% of'the cells in the population.

In an embodiment, the sub-population secretes at least 50
pg IL-8 per 106 cells/ml over a period of at least 24 hours.

In an embodiment, the sub-population secretes at least 150
pg IL-8 per 106 cells/ml over a period of at least 24 hours.

In an embodiment, the sub-population secretes at least
1000 pg IL-8 per 106 cells/ml over a period of at least 24
hours.

In an embodiment, at least 1.5% of the cells of the popu-
lation include a morphological feature selected from the
group consisting of: a cell size larger than 20 um, an elongated
cell, a spindle-shaped cell, an irregularly-shaped cell, a
granulated cell, a cell including an enlarged dark nucleus, a
multinuclear cell, a cell including flagella-like structures, a
cell including pseudopodia, and a cell having a polygonal
shape.

In an embodiment, at least 1.5% of the cells of the popu-
lation include a feature selected from the group consisting of:
CD34, CD117, CDI133, Tie-2, CD34+CD133+, KDR,
CD34+KDR+, CD144, von Willebrand Factor, SH2
(CD105), SH3, fibronectin, collagen type I, collagen type I11,
collagen type IV, ICAM type 1, ICAM type 2, VCAMI,
vimentin, BMP-R 1A, BMP-RII, CD44, integrin b1, aSM-
actin, MUC18, CXCR4 and CXCRS.

In an embodiment, at least 1.5% of the cells of the popu-
lation secrete a molecule selected from the group consisting
of: angiogenin, VEGF, MMP2, and MMP9.
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In an embodiment, at least 1.5% of the cells of the popu-
lation include a feature selected from the group consisting of:
a tube-like structure, a tendency to form a colony, a tendency
to form a cluster, and a tendency to migrate towards chemoat-
tractants selected from the group consisting of: bFGF, VEGE,
SCF, G-CSF, GM-CSF, SDF-1, and IL-8.

In an embodiment, characterizing the PCP includes cultur-
ing at least a portion of the PCP on a surface, and identifying
a tendency of the at least a portion of the PCP to migrate
toward IL-8.

The present invention will be more fully understood from
the following detailed description of embodiments thereof,
taken together with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph showing results obtained from CCP cells
in one representative experiment, in accordance with an
embodiment of the present invention;

FIG. 2 is a photograph showing morphology of angiogenic
cell precursor cells, produced in accordance with an embodi-
ment of the present invention;

FIG. 3 is a photograph characterizing uptake of Ulex-
Lectin and staining with CD31 stain of an ACP-rich PCP,
produced in accordance with an embodiment of the present
invention;

FIG. 4 is a photograph characterizing uptake of Ac-LDL
and staining with CD31 stain of an ACP-rich PCP, produced
in accordance with an embodiment of the present invention;

FIG. 5 is a photograph showing tube formation in an ACP-
rich PCP, produced in accordance with an embodiment of the
present invention;

FIGS. 6A and 6B are graphs showing migration of Ac-
LDL-DiO pre-labeled ACPs in response to hI[L-8, in accor-
dance with an embodiment of the present invention;

FIG. 7 is a graph showing migration of Ac-LDL-DiO pre-
labeled ACPs in response to a cultured medium, in accor-
dance with an embodiment of the present invention;

FIG. 8 is a graph of migration of PBMC cells in response to
hIL-8, in accordance with an embodiment of the present
invention;

FIGS. 9A and 9B are graphs showing experimental results
of improved ejection fraction and reduced necrosis in
response to injection of ACP cells in accordance with an
embodiment of the present invention;

FIGS. 9C, 9D, and 9E are photographs showing sections
taken from a rat’s heart after injection of ACPs derived from
a human-PBMC-derived CCP, produced in accordance with
an embodiment of the present invention;

FIG. 10 is a photograph showing the morphology of car-
diomyocytes derived from the CCP and produced in accor-
dance with an embodiment of the present invention;

FIGS.11A, 11B, and 11C are photographs showing immu-
nostaining of CCP-derived cardiomyocytes, in accordance
with an embodiment of the present invention;

FIGS. 12A and 12B are graphs showing flow cytometry
analysis results, obtained from immunostaining of a cardi-
omyocyte-rich PCP, in accordance with an embodiment of the
present invention; and

FIG. 13 is a graph showing experimental results of
improved ejection fraction in a rat model of acute myocardial
infarction following injection of the CCP-derived cardiomyo-
cytes, in accordance with an embodiment of the present
invention.
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DETAILED DESCRIPTION OF EMBODIMENTS

Example 1

A test was carried out in accordance with an embodiment
of the present invention, and results are shown in Table 1
below. Peripheral blood was extracted from ten human vol-
unteers for use in ten respective experiments. In each experi-
ment, cells were fractioned from the blood using a Ficoll™
gradient in order to generate a population of peripheral blood
mononuclear (PBMC) cells as source cells (“S. cells”). Sub-
sequently, a CCP was generated in accordance with protocols
described herein for Percoll™ based enrichment. Results in
Table 1 show enrichment of the percentages of CD34+
CD45-/Dim cells in the CCP compared to the source cells.
Enrichment is defined as the percentage of cells having a
given characteristic in the CCP, divided by the percentage of
cells having that characteristic in the source cells.

TABLE 1
% CD34+
% Viability % CD45 CD45-/Dim
Exp S. S. Enrichment
No cells CCP cells CCP S.cells CCP factor
1 97.56 97.86 94.00 93.46 1.4 4.07 2.9
2 98.49 97.61 92.09 87.10 0.77 3.48 4.5
3 94.28 100 9472 96.44 0.72 2.31 3.2
4 98.82 98.18 93.11 92.77 0.24 2.69 11.2
5 98.10 98.53 63.15 84.30 1.78 2.77 1.6
6 98.54 98.33 91.58 76.16  0.69 2.37 3.4
7 98.18 97.78 9558 94.46  0.88 3.7 4.2
8 99.49 97.93  96.11 9239 0.83 6.14 7.4
9 99.09 97.64  96.75 96.55 0.39 2.24 5.7
10 97.53 99.37 8446 9844 0.52 1.67 3.2
AVG  98.01 98.32 90.58 91.41 0.82 3.14 4.7
Example 2

In a separate set of experiments, in accordance with an
embodiment of the present invention, results were obtained as
shown in FIG. 1 and Table 2 below. Peripheral blood was
extracted from ten human volunteers for use in ten experi-
ments. A CCP was generated in accordance with protocols
described herein (see Example 1). Results in FIG. 1 and in
Table 2 show the fluorescent intensity of CD31Bright cells in
the CCP. CD31 brightness (Dim or Bright) is defined as the
ratio between intensity resulting from staining using anti-
CD31 FITC-conjugated monoclonal antibodies and intensity
resulting from staining using isotype control FITC-conju-
gated antibodies.

FIG. 1 is a graph showing results obtained from CCP cells
in one representative experiment, in accordance with an
embodiment of the present invention. CCP cells stained using
isotype control FITC-conjugated antibodies are represented
by the dashed line and CCP cells stained using FITC-conju-
gated anti-CD31 antibodies are represented by the black line.
Three different intensity areas were marked:

(a) M1—low intensity corresponding to non-specific stain-
ing of isotype control or cells that do not express CD31,
located at geometric mean intensity of 5.38;

(b) M2—dim intensity corresponding to cells expressing
CD31 at a geometric mean intensity of 46.69; and

(c) M3—bright intensity corresponding to cells expressing
CD31 at a geometric mean intensity of 478.45.

Table 2 is a numerical summary of intensities M1, M2 and
M3 and their respective ratios resulting from ten independent
experiments.



US 9,234,173 B2

39
TABLE 2
CD31 Intensity
Geo Mean
Isotype

EXP Control dim bright Intensity Ratio

No. M1 M2 M3 M2/M1  M3/M1  M3/M2

1 5.25 4290  299.92 8 57 7

2 5.38 46.69  478.45 9 89 10

3 5.52 30.37  340.24 6 62 11

4 4.9 2841  266.46 6 54 9

5 4.57 33.19  456.80 7 100 14

6 5.31 3494 38476 7 72 11

7 2.91 2545  318.20 9 109 13

8 2.19 2743  361.86 13 165 13

9 3.86 33.57 31046 9 80 9

10 53 42.68  400.03 8 75 9
AVG 4.52 3456  361.72 8.00 86.50 10.69
SE 0.37 2.30 21.74 0.63 10.42 0.66

CD31Bright cells’ (M3) mean intensity is 86.5 (SE = 10.42) times greater than the negative
control intensity (M1) and 10.69 (SE = 0.66) times more than CD31Dim cells (M2) (which
themselves have an intensity 8.00 (SE = 0.63) times more than M1). Thus, results indicate
that the CCP was enriched to provide CD31+ cells.

Example 3

In a separate set of experiments, in accordance with an
embodiment of the present invention, results were obtained as
shown in Table 3 below. Peripheral blood was extracted from
nine human volunteers for use in nine experiments. A CCP
was generated in accordance with protocols described here-

inabove with reference to Example 1.
TABLE 3
% CD31Bright
Exp No. S. Cells CCP Enrichment Factor
1 10.1 60.4 6.0
2 254 80.85 3.2
3 19.1 76.85 4.0
4 25.1 71.3 3.1
5 16.1 75.8 4.7
6 12.7 75.0 59
7 17.5 53.3 3.1
8 21.9 80.96 3.7
9 18.6 64.58 3.5
AVG 18.5 71.67 4.13

Results in Table 3 indicate percentage enrichment of
CD31Bright cells in the CCP as compared to the source cells.

Example 4

In a separate set of experiments, a human-PBMC-derived
CCP was cultured in order to generate an ACP-rich PCP; the
CCP was grown on fibronectin or plasma-coated T75 flasks in
the presence of medium containing autologous serum
(>=10%), 2 ng/ml VEGF, and 5 IU/ml Heparin.

FIG. 2 is a photograph showing the morphology of a typical
angiogenic cell precursor (ACP) population, produced in the
experiments of Example 3, in accordance with an embodi-
ment of the present invention. Typically, elongated and
spindle-shaped cells are observed in cultures of ACPs. This
image was obtained from x200 magnification of cultured
ACPs.

Example 5

In a separate set of experiments, a human-PBMC-derived
CCP was cultured in order to generate an ACP-rich PCP, as
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described hereinabove with respect to Example 4. The CCP
was grown on fibronectin or plasma-coated T75 flasks in the
presence of medium containing autologous serum (>=10%),
2 ng/ml VEGF, and 5 IU/ml Heparin.

FIG. 3 contains photographs of a typical angiogenic cell
precursor (ACP) population, produced in the experiments of
Example 2, in accordance with an embodiment of the present
invention. Harvested cells were loaded on a glass slide and
fixed prior to their specific staining. Stained cells were
mounted using a fluorescent mounting solution containing
the nuclear stain DAPI. FIGS. A1-A3 are a series of photo-
graphs from cells stained with FITC-conjugated Ulex-Lectin,
cells stained with PE-conjugated anti-CD31, or cells that
stained with both Ulex-Lectin and anti-CD31, in accordance
with respective embodiments of the present invention. Al is a
photograph of cells stained with the nuclear marker DAPI. A2
is a photograph showing green emission resulting from stain-
ing of the same cells with FITC-conjugated Ulex-lectin. A3 is
aphotograph showing red emission resulting from staining of
the same cells with PE-conjugated anti-CD31 antibodies.
FIGS. B1-B3 are a series of photographs from cells stained
with isotype control antibodies, in accordance with respective
embodiments of the present invention. B1 is a photograph of
cells stained with the nuclear marker DAP1, B2 is a photo-
graph showing green emission resulting from staining of the
same cells with FITC-conjugated mouse IgG antibodies, and
B3 is a photograph showing red emission resulting from
staining of the same cells with PE-conjugated mouse IgG
Antibodies.

Typically, ACP cells fluoresce both red and green indicat-
ing adhesion of both Ulex-Lectin and anti-CD31 thereto.
Images were obtained from x200 magnification.

Example 6

In a separate set of experiments, a human-PBMC-derived
CCP was cultured in order to generate an ACP-rich PCP, as
described hereinabove with reference to Example 4. The CCP
was grown on fibronectin or plasma-coated T75 flasks in the
presence of medium containing autologous serum (>=10%),
2 ng/ml VEGF, and 5 IU/ml Heparin.

FIG. 4 contains photographs of a typical angiogenic cell
precursor (ACP) population, produced in the experiments of
Example 4, in accordance with an embodiment of the present
invention. Harvested cells were loaded on a glass slide and
fixed prior to their specific staining. Stained cells were
mounted with a fluorescent mounting solution containing the
nuclear stain DAPI. FIGS. A2-A3 are a series of photographs
demonstrating uptake of Ac-LDL, cells stained with anti-
CD31, or cells that show both uptake of Ac-LDL and staining
with anti-CD31, in accordance with respective embodiments
of the present invention. Al is a photograph of cells stained
with the nuclear marker DAPI, A2 is a photograph showing
green emission resulting from uptake of FITC labeled-Ac-
LDL by the same cells, and A3 is a photograph showing red
emission resulting from staining of the same cells with PE-
conjugated anti-CD31 antibodies. FIGS. B1-B3 are a series
of photographs from cells stained with isotype control anti-
bodies, in accordance with an embodiment of the present
invention. B1 is a photograph of cells stained with the nuclear
marker DAP1, B2 is a photograph showing green emission
resulting from staining of the same cells with FITC-conju-
gated mouse IgG antibodies, and A3 is a photograph showing
red emission resulting from staining of the same cells with
PE-conjugated mouse I1gG Antibodies.



US 9,234,173 B2

41

Typically, ACP cells fluoresce both green and red indicat-
ing that ACPs uptake Ac-LDL as well as comprise CD31.
Images were obtained from x200 magnification.

Example 7

In the same set of experiments, the human-PBMC-derived
CCP was cultured in order to generate an ACP-rich PCP as
described hereinabove with respect to Example 4. Flow-cy-
tometry percentage staining results from nine independent
experiments are summarized in Table 4, and show the average
staining results obtained on day 5 of culturing.

TABLE 4
Number Average on  Standard
experiments (n) day 5 Error
% CD34 9 53.1 6.9
% KDR 9 2.3 1.1
% Tie-2 9 6.6 1.6
% Ac-LDL x CD31Bright 9 60.7 4.7

Results using such a protocol typically yield a PCP having an
average of 60.7% of cells that both demonstrate uptake of
Ac-LDL and stain for CD31Bright.

Example 8

In a separate set of experiments, a human-PBMC-derived
CCP was cultured in order to generate an ACP-rich PCP, as
described hereinabove with respect to Example 4. Harvested
ACP-rich PCP cells were washed from culture medium and
incubated for 24 hours in a serum-free medium. Average
secretion levels (pg/ml) of 1L.-8, VEGF, and angiogenin as
obtained from four independent experiments are summarized
in Table 5.

TABLE 5
Group IL-8 pg/ml VEGF pg/ml Angiogenin pg/ml
Control Medium =20 =20 =20
ACP derived medium 10107 165 615
Example 9

In the same set of experiments, a human-PBMC-derived
CCP was cultured in order to generate an ACP-rich PCP, as
described hereinabove with reference to Example 4. Angio-
genic pattern and vascular tube formation of ACP-rich PCP
cells were examined microscopically following plating of the
cells on an extracellular matrix gel (ECM). Typically, semi-
closed and closed polygons of capillaries and complex mesh-
like capillary structures were observed and scored according
to a scale published by Kayisli et al. (52) as grade 4-5, indi-
cating the angiogenic-inducing properties of the ACP-rich
PCP.

FIG. 5 is a photograph showing tube formation in an ACPs,
produced in the experiments of Example 6, in accordance
with an embodiment of the present invention. Typical mesh-
like capillary structures generated from a harvested ACPs are
present in the culture and are suitable for administration to a
human.

Example 10

In a separate set of experiments, a human-PBMC-derived
CCP was cultured in order to generate an ACP-rich PCP; the
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CCP was grown on fibronectin or plasma-coated T75 flasks in
the presence of medium containing autologous serum
(>=10%), 2-10 ng/m1 VEGF, and 5 IU/ml Heparin. At the end
of'the culturing period, ACP cells were harvested and labeled
with 0.8 ug/ml Ac-LDL-DiO for 15 min at 37 C. and placed in
inserts which were placed in wells. One million labeled ACPs
were placed on microporous membrane inserts with a pore
size of 8 micrometer. 200 ul medium was placed at the bottom
of each of the wells. Negative control (M199), positive con-
trol (e.g., 20 ng/ml VEGF, 20 ng/ml bFGF, and 20 ng/m1 SCF)
and 0.08-60 ng/ml human recombinant Interleukin-8 (hIL.-8)
diluted in M199 medium were plated in respective wells and
the ACP cells were allowed to migrate toward each respective
medium. Following 1 hour incubation in the presence of the
negative control medium, the positive control medium, and
the IL-8 containing media, labeled migrating cells from 10-15
random microscopic fields were evaluated using fluorescent
microscope and automated counting software (NIH Imagel).
Calculation of cell number per 1 mm”2 was based on area of
counting field (x20) which equals 0.178 mm"2, and each
mm"2 contains 5.62 fields. Assessment of ACP migratory
potential indicated that ACPs migrate toward chemokines
such as VEGF, bFGF, SCF, and hIL.-8 in a manner dependent
on respective concentrations thereof, e.g., hI[.-8 concentra-
tion of typically higher than 6.7 ng/ml induces substantial
migration of ACPs, and hILL-8 concentrations of about 7-20
ng/ml typically induce substantial migration of ACPs.

FIGS. 6A and 6B are graphs showing results obtained in
five experiments of Example 10, in accordance with an
embodiment of the present invention. FIG. 6A shows migra-
tion toward negative and positive control media of Ac-L.DL-
DiO pre-labeled ACPs. FIG. 6B shows a dosage-dependence
curve reflecting migration of Ac-LDL-DiO pre-labeled ACPs
in response to increasing concentrations of hIL-8. ACPs
derived from the human-PBMC-derived CCP show statisti-
cally significant migration toward the positive control
samples. Moreover, ACP migration corresponding to increas-
ing hIL.-8 doses was observed. Dose-dependent ACP migra-
tion peaked at 6.7-20 ng/ml of hIL-8.

Example 11

In a separate set of experiments, the human-PBMC-de-
rived CCP was cultured in order to generate an ACP-rich PCP,
as described hereinabove with reference to Examples 4 or 10.
In some embodiments, generation of the ACP-rich PCP is
attributed to migration of ACP cells to a specific chemokine,
in combination with the differentiation of CCP cells. Migra-
tory potential of ACP-rich PCP was measured as described
hereinabove with respect to Example 10. In this example, a
conditioned medium (CM) was generated using the patients’
cells which secrete chemokines into the medium. The
patients’ cells were then extracted from the medium, leaving
a chemokine-rich medium for subsequent plating of ACP
therein. The potential for ACP migration in response to
chemokines was then assessed when the ACPs were incu-
bated for 1 hour with conditioned medium.

Following 1 hour incubation in the presence of negative
control (M199); 20 ng/ml hIL.-8; or CM (at concentrations of
2-20 ng/ml), migration of labeled cells from 10-15 random
microscopic fields was evaluated using a fluorescent micro-
scope and automated counting software (NIH Imagel). Cal-
culation of cell number per 1 mm™2 is based on area of
counting field (x20)=0.148 mm"2 and thus each square mil-
limeter contains 6.7 fields. It was determined that ACPs
migrate toward chemokines secreted during the production of
the ACP-rich PCP.
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For some applications, the generated ACP-rich PCP
batches were used to treat cardiovascular patients. All
patients treated with these batches showed more than 10%
improvement in left-ventricular-ejection fraction both 3 and 6
months following treatment. It is hypothesized that this
improvement was enabled at least in part by the migration of
ACPs to the vicinity.

FIG. 7 is a graph showing results obtained in four experi-
ments of Example 11, in accordance with an embodiment of
the present invention. The ACPs derived from the human-
PBMC-derived CCP show statistically significant migration
toward the conditioned medium containing secreted chemok-
ines; this medium was generated in the process of the produc-
tion of ACP-rich PCP.

Example 12

In a separate set of experiments, migratory potential of
human-PBMC toward hIL-8 was measured. In vitro assess-
ment of PBMC migratory capability in response to hlL.-8 was
used to determine the potential of IL.-8 to mobilize blood
derived stem/progenitor cells from peripheral blood to loca-
tions in which high concentrations of IL-8 are expressed in
vivo. Peripheral blood was extracted from six human volun-
teers for use in six respective experiments. In each experi-
ment, a Ficoll™ gradient was used to generate a population of
PBMCs. One million PBMCs were placed on 3 um pore size
microporous membrane inserts which were placed in wells.
200 ul medium was placed at the bottom of each of the wells.
Negative control (M199) and positive control (20 ng/ml] hIL-
8) diluted in M199 medium were plated in respective wells
and the PBMCs cells were allowed to migrate toward each
respective medium. Following 1 hour incubation in the pres-
ence of the negative control medium and the positive control
medium, migration of cells from 10-15 random microscopic
fields was evaluated using a fluorescent microscope and auto-
mated counting software (NIH ImagelJ). Calculation of cell
number per 1 mm"2 is based on area of counting field (x20)
which equals 0.148 mm"2, and each square millimeter con-
tains 6.7 fields. It was determined that hIL.-8 induced mobi-
lization of only a small fraction of the PBMCs, probably the
stem/progenitor cells.

FIG. 8 is a graph of migration of PBMCs in response to
hIL-8, in accordance with an embodiment of the present
invention. The results were obtained from six experiments
(Example 12), and show that stem/progenitor cells derived
from human-PBMCs migrate toward hIL-8.

Example 13

Reference is now made to FIGS. 9A and 9B which are
graphs showing results obtained in the experiments following
injection into rats of ACP-rich PCPs derived from a human-
PBMC-derived CCP (as described hereinabove with respect
to Example 4) following acute myocardial infarction, in
accordance with an embodiment of the present invention.

The human-PBMC-derived CCP was cultured in order to
generate an ACP-rich PCP as described in Example 4. ACP-
rich PCP therapeutic potential was then assessed in a rat
model of acute myocardial infarction which was induced in
15 male nude rats (200-225 g) by ligation of the left anterior
descending (LAD) artery. Six days after myocardial infarc-
tion, 10 rats were injected with 1.5x10"6 ACP-enriched cells
(ACP, n=10), while 5 rats were injected with the culture
medium (Control, n=5), via the aortic arch. Cardiac function
(ejection fraction) and the ratio of necrotic scar area to left
ventricular free wall area were measured 28 days following
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the ACP-rich PCP and the culture medium administrations. It
is to be noted that the percentage of ejection fraction of the
ACP-administered rats, as represented by FIG. 9A, increased
substantially in comparison to the decreased percentage ejec-
tion fraction of the control rats. Additionally, a percentage
reduction of necrotic tissue was observed in the ACP-admin-
istered rats in comparison to the percentage of necrotic tissue
observed in the control rats. Paraffin fixed tissue sections
obtained from the 10 ACP-administered rats were stained in
order to trace engrafted human cells and cardiomyocyte
(CMC) markers in the border area of the scar tissue.

FIGS. 9C, 9D and 9E are photographs showing typical
sections taken from a heart of one of the 10 rats 28 days after
the injection of the ACPs derived from a human-PBMC-
derived CCP in the experiments of the present example (Ex-
ample 13) in accordance with an embodiment of the present
invention. FIG. 9C shows staining of the rat’s heart cells with
anti-human mitochondria. FIG. 9D shows the cells stained for
CMC markers (myosin heavy chain (MHC)), FIG. 9E shows
the rat heart cells stained for cardiac Troponin I. (Reference is
again made to FIG. 9C-E. The stained cells are marked by
arrows). These results depicted in FIGS. 9C-D demonstrate
that the human ACPs, derived in accordance with an embodi-
ment of the present invention from the hAPBMC-derived CCP,
homed to damaged cardiac tissues, engrafted, and is hypoth-
esized to have transdifferentiated into cells expressing cardi-
omyocyte markers.

It is to be noted that ACPs typically improve systemic
endothelial functioning, as expressed by improved ejection
fraction and reduced necrosis. Particular examples of
improvement due to administration of ACPs, derived in
accordance with an embodiment of the present invention,
include improved cardiovascular functioning and improved
sexual functioning. The scope of the present invention
includes identifying a patient having cardiovascular dysfunc-
tion or sexual dysfunction, and administering ACPs to the
patient in order to treat the dysfunction.

Example 14

In a production procedure, individual autologous human-
PBMC-derived CCPs were cultured in order to generate an
ACP-rich PCP, as described hereinabove. The CCPs were
grown on autologous plasma-coated T75 flasks in the pres-
ence of medium containing autologous serum (>=10%), 2-10
ng/ml VEGF, and 5 IU/ml Heparin. Harvested cells, approved
by Quality Control for clinical use, were administrated to
patients. The therapeutic potential of ACP-rich PCP is sum-
marized in results of administration thereof to 14 patients
suffering from end-stage heart failure. Left ventricular ejec-
tion fraction (EF) and disease severity score (Score) were
assessed prior to and 1-8 months after the ACP cell adminis-
tration. Improvement of these parameters was calculated rela-
tive to each patient’s baseline evaluation according to the
following equation:

% Improvement=(Test result after treatment-Baseline
test result)/Baseline test result.

Results show statistically significant improvement
(p<0.0001; tested using two-tailed, paired t test analysis) in
both parameters following treatment by administering ACP-
rich PCP.

Table 6 shows the number of treated patients, averages and
individual results relating to EF and disease severity score, as
well as the calculated percent improvement thereof.
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TABLE 6
% EF* SCORE*
% EF At1-8 EF % SCORE At1-8 SCORE %
Batch No. Baseline Months Improvement Baseline Months  Improvement
N 14 14 14 14.0 14.0 14.0
Average 24.1 34.8 49.8 2.9 1.6 45.6
Range 14.9-36.0  20.0-50.0 11.1-133 2.0-4.0 1.0-3.0 29.0-67.0
SE 2.1 2.8 10.9 0.1 0.1 4.1
PCEPCO066 30.0 40.0 33.3 2.00 1.00 50.00
PCEPCO81 23.0 50.0 1174 3.00 1.00 66.67
PCEPCO083 275 325 18.2 3.00 2.00 33.33
PCEPCO091 14.9 20.0 342 3.00 2.00 33.33
PCEPC092 35.0 41.0 17.1 3.00 2.00 33.33
PCEPC0%4 36.0 40.0 11.1 3.00 2.00 33.33
PCEPC097 15.0 275 83.3 3.00 1.00 66.67
PCEPC099 15.0 35.0 133.3 3.50 2.00 42.86
PCEPC103 18.3 20.9 14.2 3.00 2.00 33.33
PCEPC106 15.0 20.0 33.3 3.00 1.00 66.67
PCEPC110 25.0 50.0 100.0 3.00 2.00 33.33
PCEPC114 22.0 30.0 36.4 2.00 1.00 50.00
PCEPC121 25.0 32.0 28.0 3.50 2.50 28.57
PCEPC137 35.0 48.0 37.1 3.00 1.00 66.67
*Significant improvement p < 0.0001
Example 15 FIGS. 12A and 12B are graphs showing flow cytometry
,5 analysis results obtained from immunostaining of a CMC-

In a separate set of experiments, a human-PBMC-derived
CCP was cultured in order to generate a cardiomyocyte
(CMC)-rich PCP; the CCP was grown on fibronectin or
plasma-coated T75 flasks in accordance with protocols
described herein (see medium preparation).

FIG. 10 is a photograph of a typical CMC-rich PCP from
the experiments of the current example (Example 15), derived
in accordance with an embodiment of the present invention.
Typically, these cells appear elongated with dark cytoplasm,
which may indicate high protein content. This image was
obtained from x200 magnification of cultured CMC-rich PCP
cells.

FIGS.11A, 11B, and 11C are photographs showing immu-
nostaining of CCP-derived cardiomyocytes in the experi-
ments of the current example (Example 15), in accordance
with an embodiment of the present invention. Slide-fixed
CMC PCP cells were stained with:

FIG. 11 A—anti-cardiac Troponin detected by anti-mouse
Cy-3;

FIG. 11B—anti-alpha-actin detected by anti-mouse IgG-
FITC; and

FIG. 11C—anti-connexin 43 detected by anti-mouse IgG-
FITC.

Cells stained with non-specific mouse IgG were detected
by anti-mouse IgG-FITC or by anti-mouse IgG-Cy3 and were
used as negative controls.

FIGS. 11A-C show that CMC-rich PCP cells expressed the
typical cardiomyocyte cellular markers: cardiac Troponin T
(FIG. 11A), alpha-actin (FIG. 11B), as well as the function-
ally important GAP junction marker connexin-43 (FIG. 11C).
The images were obtained from x100 magnification of slide-
fixed cells.

Example 16

In the same set of experiments that produced the results
shown in FIGS. 10-11C, a human-PBMC-derived CCP was
cultured in order to generate a CMC-rich PCP; the CCP was
grown on fibronectin or plasma-coated T75 flasks in accor-
dance with protocols described herein (see medium prepara-
tion).
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rich PCP in the experiments of the current example (Example
16), in accordance with respective embodiments of the
present invention. In FIGS. 12A-B, lines describing control,
e.g., non-specific staining, are marked as “Control”; specific
immunostaining with the cardiac cellular markers desmin and
troponin T are marked as Desmin (FIG. 12A) and Troponin T
(FIG. 12B), respectively. The M1 line represents the statisti-
cal marker area in which the cells are positively stained for the
respective marker.

Example 17

In a separate set of experiments, a human-PBMC-derived
CCP was cultured in order to generate a CMC-rich PCP, as
described hereinabove. The CMC-rich PCP cells’ therapeutic
potential was assessed in a rat model of acute myocardial
infarction. CMC-rich PCP cells were used for implantation
into a rat model of induced acute myocardial infarction as
described hereinabove with respect to Example 13 (with the
exception that CMC-rich PCP cells were used for implanta-
tion into the rat model in the current example, whereas in
Example 13, ACP-rich PCP cells were used for implantation).
Six days after myocardial infarction, heart muscle of 9 rats
were injected with 1.5x10°6 CMC PCP cells (CMC, n=9),
while heart muscle of 5 rats were injected with culture
medium (Control, n=5). Cardiac function (ejection fraction)
was evaluated 14 days following the administration of the
CMC-rich PCP cells or culture medium.

FIG. 13 is a graph showing experimental results obtained in
the experiments of Example 13, in accordance with another
embodiment of the present invention. It is to be noted that the
percentage of ejection fraction of the CMC-administered rats
increased substantially in comparison to the decreased per-
centage ejection fraction of the control rats.

A series of protocols are described hereinbelow which may
be used, as appropriate, separately or in combination with
Examples 1-17, in accordance with embodiments of the
present invention. [tis to be appreciated that numerical values
are provided by way of illustration and not limitation. Typi-
cally, but not necessarily, protocols may be derived using
values selected from a range of values that is within 20% of
the value shown. Similarly, although certain steps are
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described herein with a high level of specificity, a person of
ordinary skill in the art will appreciate that additional or other
steps may be performed, mutatis mutandis.

In accordance with an embodiment of the present inven-
tion, generation of a single-cell suspension is carried out
using the following protocols:

Protocol 1: Extraction of Peripheral Blood
Mononuclear Cells (PBMC)

Receive blood bag and sterilize it with 70% alcohol.

Load blood cells onto a Ficoll™ gradient.

Spin the tubes for 20 minutes at 1050 g at room temperature
(RT), with no brake.

Collect most of the plasma from the supernatant.

Collect the white blood cell fraction from every tube.

Transfer the collected cells to a new 50 ml tube, adjust
volume to 30 ml per tube using PBS.

Spin tubes for 15 minutes at 580 g, RT, and discard super-
natant.

Count cells in Trypan Blue.

Re-suspend in culture medium comprising, for example,
X-vivo 15™.

Protocol 2: Extraction of Cells from Umbilical Cord

Isolate 10 cm umbilical cord.

Wash thoroughly with sterile PBS.

Identify the major vein of the cord, and clamp one end of
the vein.

Wash twice with 30 ml sterile PBS.

Fill vein with 0.15% collagenase (about 5 ml of 0.15%
collagenase solution).

Clamp the second end of the vein.

Incubate at 37 C. for 15 min.

Wash outer side of the cord with 70% ethanol.

Release the clamp from one end of the vein and collect the
cell suspension.

Centrifuge for 10 min at 580 g, 21 C.

Re-suspend the cells in culture medium comprising, for
example, X-vivo 15™, 10% autologous serum, 5 [U/ml
heparin, and one or more growth factors.

Protocol 3: Extraction of Cells from Bone Marrow

Get bone marrow aspiration from surgical room.

Re-suspend in culture medium comprising, for example,
X-vivo 15™_ 10% autologous serum, 5 IU/ml heparin,
and one or more growth factors.

Pass suspension through a 200 um mesh.

In accordance with an embodiment of the present inven-

tion, generation of a CCP is carried out using the following
protocols:

Protocol 1: Generation of a Human CCP from
PBMCs Using a Percoll™ Gradient

Prepare gradient by mixing a ratio of 5.55 Percoll™ (1.13
g/ml): 3.6 ddH20:1 PBSx10.

For every 50 ml tube of Percoll: mix 20 ml of Percoll™
stock, 13 ml of ddH20 and 3.6 ml of PBSx10.

Mix vigorously, by vortexing, for at least 1 min.

Load 34 ml mix into each 50 ml tube.

Centrifuge tubes, in a fixed angle rotor, for 30 min at
17,000 g, 21 C., with no brake.

Gently layer 3.0 ml of cell suspension of 150 million-400
million PBMCs on top of the gradient.
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Prepare a second tube with density marker beads: gently
layer 3.0 ml of medium on top of the gradient.

Gently load density marker beads—10 ul from each bead
type.

Centrifuge tubes, in a swinging bucket rotor, for 30 min at
1260 g at 13 C., with no brake.

Gently collect all bands located above the red beads, and
transfer to tube with 10 ml medium.

Centrifuge cells for 15 min at 580 g at 21 C.

Discard supernatant and re-suspend pellet in medium.

Count cells in Trypan blue.

Centrifuge cells for 10 min at 390 g, 21 C.

Discard supernatant and re-suspend pellet in medium.

Take CCP cells for FACS staining.

Protocol 2: Generation of Human CCP from PBMCs
Using an OptiPrep™ Gradient

Take up to 130 million cells for each enrichment tube.

Spin cells for 10 min at 394 g, 21 C.

Suspend cell pellet in 10 ml of donor serum.

Prepare a 1.068 g/m1 OptiPrep™ gradient by mixing a ratio
of 1 OptiPrep™: 4.1 PBS.

For every 50 ml enrichment tube:

Mix 10 ml of cell suspension with 4 ml OptiPrep™.

For preparation of a 1.068 g/ml OptiPrep™ gradient, mix 5
ml of OptiPrep™ and 20.5 ml of PBS.

Gently layer 20 ml of the 1.068 g/ml gradient on top of the
cell suspension.

Gently layer 1.5 ml Hank’s buffered saline (HBS) on top of
the gradient layer.

Centrifuge for 30 min at 700 g at 4 C., with no brake.

Gently collect the layer of cells that floats to the top of the
1.068 g/ml OptiPrep™ gradient into a 50 ml tube pre-
filled with PBS.

Centrifuge for 10 min at 394 g, 21 C.

Discard supernatant and re-suspend pellet in medium.

Count cells in Trypan Blue.

It is to be noted that culture containers are typically either

un-coated or coated with one or a combination of ACP-en-
hancing materials such as collagen, fibronectin, CD34,
CD133, Tie-2, or anti-CD117.

In accordance with an embodiment of the present inven-
tion, the coating of a tissue culture container is carried out
using the following protocols:

Protocol 1: Coating T75 Flasks with 25 ug/ml
Fibronectin

For 20 T75 flasks—Prepare up to seven days before, or on
day of PBMC preparation.

Prepare 50 ml of 25 ug/ml fibronectin solution in PBS.

Fill every flask with 2-5 ml fibronectin 25 ug/ml.

Incubate at 37 C. for at least 30 min.

Collect fibronectin solution.

Wash flask twice in PBS.

Dry flasks

Keep dry flasks at room temperature.

Dried flasks can be saved for one week at room temperature
[RD).

Protocol 2: Coating T75 Flasks with 25 ug/ml
Fibronectin and 5 ng/ml BDNF

Coat flasks with Fibronectin 25 pg/ml, as described in
Protocol 1.
Prepare 50 ml of 5 ng/ml BDNF solution in PBS.
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After washing off Fibronectin, fill every flask with 2-5 ml
BDNF 10 ng/ml.

Incubate at 37 C. for 1 hour.

Collect the solution.

Wash flask twice in 10 ml PBS.

Keep dry flasks at room temperature until use.

In accordance with an embodiment of the present inven-
tion, serum preparation is carried out using the following
protocol: (Serum can be obtained directly or prepared from
plasma).

Protocol: Preparation of Serum from Human Plasma

Take 100 ml of undiluted blood.

Spin at 1100 g (2500 rpm) for 10 min.

Transfer the upper layer (plasma) to a new 50 ml tube.

Add 1.0 ml 0.8M CaCl,-2H,0 for every 40 ml plasma.

Incubate for 0.5-3 hours at 37 C.

Spin coagulated plasma 5 min at 2500 g.

Collect the serum in a new tube, avoiding clotting.

Aliquot collected serum and save at =20 C. until use.

In accordance with an embodiment of the present inven-
tion, medium preparation is carried out using the following
protocols:

Medium should contain 1-20% autologous serum and/or
1-20% conditioned medium.

Medium can contain one or more additives, such as LIF,
EPO, IGF, b-FGF, M-CSF, GM-CSF, TGF alpha, TGF beta,
VEGF, BHA, BDNF, NGF, EGF, NT3, NT4/5, GDNF, S-100,
CNTF, NGF3, CFN, ADMIF, estrogen, progesterone, corti-
sone, cortisol, dexamethasone, or any other molecule from
the steroid family, prolactin, an adrenocorticoid hormone,
ACTH, glutamate, serotonin, acetylcholine, NO, retinoic acid
(RA) or any other vitamin D derivative, Heparin, insulin,
forskolin, Simvastatin, MCDB-201, MCT-165, glatiramer
acetate, a glatiramer acetate-like molecule, IFN alpha, IFN
beta or any other immunoregulatory agent sodium selenite,
linoleic acid, ascorbic acid, transferrin, 5-azacytidine, PDGF,
VEGF, cardiotrophin, and thrombin or Rosiglitazone in vari-
ous concentrations, typically ranging from about 100 pg/mlto
about 100 pg/ml (or molar equivalents).

Typically, medium should not be used more than 10 days
from its preparation date.

Protocol 1: Medium for Enhancement of
CCP-Derived Angiogenic Cell Precursors (ACPs)

Serum-free medium (e.g., X-vivo 15™)
10% autologous serum

5 IU/m] Heparin

5 ng/ml VEGF

1 ng/ml EPO

Protocol 2: Medium for Enhancement of
CCP-Derived Neuronal Progenitor Cells

Serum-free medium (e.g., X-vivo 15™)
20 ng/ml bFGF
50 ng/ml NGF

200 uM BHA (this is added during the last 24 hours of

culturing)
10 ng/ml IFN beta
10 ug/ml glatiramer acetate
10 uM forskolin
1 uM cortisone
1 ug/ml insulin
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Protocol 2.1: Medium for Enhancement of
CCP-Derived Neuronal Progenitor Cells

Serum-free medium (e.g., X-vivo 15™)

20 ng/ml bFGF

50 ng/ml NGF

25 ng/ml BDNF

200 uM BHA (this is added during the last 24 hours of
culturing)

Protocol 3: Medium for Enhancement of
CCP-Derived Retinal Cells

Serum-free medium (e.g., X-vivo 15™)
10% autologous serum

5 IU/ml Heparin

10 ng/ml EGF

20 ng/ml bFGF

10 ug/ml glatiramer acetate

50 ng/ml NGF3

Protocol 4a. Medium for Enhancement of
CCP-Derived Cardiomyocyte (CMC) Progenitor
Cells

Step 1

Serum-free medium (e.g., X-vivo 15™)

10% autologous serum

20 ng/ml bFGF

20 ug/ml IFN beta

5 IU heparin.

Step 11

Five to ten days after culture onset, add 3 uM 5-azacytidine

for 24 hours.

Protocol 4b: Medium for Enhancement of
CCP-Derived CMC Progenitor Cells

Serum free medium DMEM-Low glucose
20% autologous serum

10% MCDB-201

2 ug/ml Insulin

2 ug/ml Transferin

10 ng/ml Sodium Selenite

50 mg/ml BSA

1 nM Dexamethasone

20 ug/ml Glatiramer acetate

0.47 ug/ml Linoleic acid

0.1 mM Ascorbic Acid

100 U/ml penicillin

In accordance with an embodiment of the present inven-

tion, conditioned medium preparation is carried out using the
following protocol:

Protocol 1: Preparation of 100 ml Enriched Medium
Containing 10% Autologous Conditioned Medium

Thaw 10 ml conditioned medium in an incubator.
When thawed, add it to culture medium using pipette.

Extraction of Tissue Pieces for Co-Culture:
Dissection of Rat Blood Vessels (Other Non-Human or
Human Tissues May Also be Used):

Anesthetize animal using anesthetic reagents (e.g.,
60-70% CQO2, isoflurane, benzocaine, etc.).

Lay animal on its back and fix it to an operating table.

Using sterile scissors, cut animal’s skin and expose the
inner dermis.
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Using a second set of sterile scissors, cut the dermis, cut
chest bones, and expose the heart and aorta.

Cut small pieces, 0.2-1 cm long, from the aorta and other
blood vessels, and place them in a container pre-filled
with 50 ml cold culture medium (e.g. RPMI, X-vivo
15™_ or any other growth medium).

Using forceps and scissors, clean tissue sections, to remove
outer layers such as muscle, fat, and connective tissue.

Using forceps and scalpel, cut each blood vessel along its
length, and expose the inner layer of endothelial cells.

Using forceps and scalpel, cut small pieces ofupto 0.1 cm2
from the tissue.

It is to be understood that whereas this technique is in
accordance with one embodiment of the present invention,
the scope of the present invention includes extracting a blood
vessel from a human, as well. For example, an incision may
be made over the saphenous vein, in order to facilitate dissec-
tionofadistal 1 cm portion of the vein. Tributary veins thereto
are tied and transected. Distal and proximal ends of the 1 cm
portion of the saphenous vein are tied, and the vein is har-
vested.

Use the dissected tissue for direct and/or indirect co-cul-
turing with the CCP and/or to generate conditioned medium.

Generation of Conditioned Medium:

Lay dissected pieces in culture containers, for example in
T75 flasks, or 50 ml tubes.

Optionally, fill with cell culture medium containing 0.1-3
ug/ml or 3-100 ug/ml apoptotic reagent (such as valino-
mycin, etoposide or Staurosporine), until all pieces are
covered.

Refresh culture medium every 2 days.

Collect this medium (now conditioned medium) into 50 ml
tubes.

Spin collected conditioned medium at 450 g for 10 min, at
room temperature.

Collect supernatant in a new sterile container.

Details regarding preservation of the conditioned medium,
in accordance with an embodiment of the present invention,
are described hereinbelow.

In accordance with an embodiment of the present inven-
tion, culturing of a CCP to produce a PCP is carried out using
the following protocols:

Protocol 1: Culturing of CCP Cell Suspension in T75
Flasks

Spin suspension for 15 minutes at 450 g, 21 C.

Discard the supernatant.

Gently, mix cell pellet and re-suspend the CCP cells.

Re-suspend pellet to 10 million CCP cells/ml.

Fill T75 flask with 15 ml enriched medium, and add 5 ml of
10 million CCP cells/ml to attain a final concentration of
50 million CCP cells/flask.

Incubate T75 flasks, plates and slides at 37 C., 5% CO2.

Protocol 2: Applied Hypoxia

For some applications, increased expansion and/or difter-
entiation of the CCP may be obtained by exposure of the cell
culture to oxygen starvation, e.g., 0.1-5% or 5-15% oxygen
(hypoxia), for 2-12 or 12-48 hours. This is typically done one
or more times, at different points during cell culturing.

Incubate T75 flasks in an oxygen-controlled incubator.

Set the oxygen pressure at 0.1%, and maintain it at this

level for 24 hours.

Remove the flasks from the incubator and examine the

culture.
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Take a sample of CCP cells and test viability by Trypan
blue exclusion method.

Set the oxygen pressure of the incubator at 20%.

Re-insert the flasks into the incubator and continue incu-
bation for the rest of the period. This procedure can be
repeated, for example, once a week during the culture
period and/or within 24, 48, or 72 hours before termina-
tion of the culture.

Protocol 3: Reseeding of Adherent and/or Detached
and/or Floating Cells

For some applications, increased expansion and differen-
tiation of the CCP may be achieved by re-seeding collected
cells on new pre-coated dishes in culture medium.

Collect all cultured CCP in tubes.

Spin tubes for 10 minutes at 450 g, 21 C.

Discard the supernatant.

Gently mix pellet and re-suspend cells in 10 ml fresh

medium per T75 flask.

Seed suspended cells in new pre-coated T75 flasks.

Continue culturing the cells, and perform all other activi-

ties (e.g., medium refreshment, visual inspection, and/or
flow cytometry), as appropriate, as described herein.

This procedure can be performed weekly during the culture
period and/or within 24, 48, or 72 hours before termination of
the culture.

In accordance with an embodiment of the present inven-
tion, co-culturing of CCP with tissue-derived conditioned
medium is carried out using the following protocol:

Protocol 1: Culturing of CCP in the Presence of
Conditioned Medium Derived from a Blood Vessel
Culture

Spin CCP cells for 15 minutes at 500 g, 21 C.

Discard the supernatant.

Gently mix cell pellet and re-suspend cells to 5-50 million/
ml in autologous medium containing 1-20% autologous
serum and/or 1-20% conditioned medium.

Seed flasks with 2-5 million CCP cells/ml.

Incubate flasks at 37 C., 5% CO2.

After first three days of culture, non-adherent cells can be

removed from the culture.

In accordance with an embodiment of the present inven-
tion, refreshing of the media in ongoing growing CCP cul-
tures is carried out using the following protocol:

Refreshing of the media in ongoing growing flasks should
occur every 3-4 days.

Protocol 1: Refreshing of Medium in T-75 Flasks

Collect non-adherent cells in 50 ml tubes.
Fill every flask with 10 ml fresh culture medium enriched
with conditioned medium.
Spin tubes for 10 minutes at 450 g, RT; discard the super-
natant.
Gently mix cell pellet and re-suspend cells in 10 ml/flask
fresh culture medium enriched with condition medium.
Return 5 ml of cell suspension to every flask.
In accordance with an embodiment of the present inven-
tion, indirect co-culture of CCP cells with tissue dissection is
carried out using the following protocol:

Protocol 1: Indirect Co-Culture of Dissected Blood
Vessel and CCP Cells in a Semi-Permeable
Membrane Apparatus

Lay dissected tissue pieces in the upper chamber of the
apparatus on top of the semi-permeable membrane.
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Implant CCP cells in lower chamber.

Lower chamber can be pre-coated with growth-enhancing
molecules such as collagen, plasma, fibronectin, a
growth factor, tissue-derived extra cellular matrix and an
antibody.

Refresh culture medium in the upper chamber—aspirate
conditioned medium into 50 ml tubes and add autolo-
gous culture medium.

Preserve collected conditioned medium at -20 C.

Remove upper chamber after four days of co-culture.

Refresh culture medium of the CCP cells with culture
medium containing 1-20% autologous serum and/or
1-20% conditioned medium.

Continue growing and harvesting as described herein.

Co-Culture in Separate Chambers within a Culture Con-

tainer

In accordance with an embodiment of the present inven-

tion, co-culturing within a culture container is carried out
using the following protocol:

Protocol 1: Direct Co-Culturing of Autologous
Dissected Blood Vessel and CCP Cells

Lay dissected tissue pieces in pre-coated flasks.
Implant CCP cells in pre coated second chamber.

Using forceps, take out tissue pieces after four days of
co-culture.

Refresh culture medium of the CCP cells with culture
medium containing 1-20% autologous serum and/or
1-20% condition medium.

Continue growing and harvesting as described herein.

In accordance with an embodiment of the present inven-

tion, harvesting of the cellular product is carried out using the
following protocol:

Protocol 1: Collection of Resulting ACP Cultures

Collect cells in 50 ml tubes.

Carefully wash flask surface by pipetting with cold PBS to

detach adherent cells.

Collect washed adherent cells to 50 ml tubes.

Add 5 ml of cold PBS.

Detach remaining adherent cells using gentle movements

with cell scraper.

Collect the detached cells and add them to the tubes

Optionally, add 5 ml EDTA to each flask and incubate at 37

C. for 5 min.

Collect the detached cells and add them to the tubes Spin

tubes for 5 min, at 450 g, room temperature.

Re-suspend the pellets in 2-5 ml PBS.

Count the cells in Trypan blue.

In accordance with an embodiment of the present inven-
tion, cellular product preservation is carried out using the
following protocols:

Cellular product can be kept in preservation media or fro-
zen in freezing buffer until use for transplantation into a
patient.

Protocol 1: Cryopreservation of Cellular Product

Prepare freezing buffer containing 90% human autologous
serum and 10% DMSO.

Suspend cellular product in freezing buffer and freeze in
liquid nitrogen.
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Protocol 2: Short-Period Preservation of Cellular
Product

Prepare preservation medium including growth medium
containing 1-20% autologous serum, with few or no other
additives. Maintain preservation medium with cellular prod-
uct at 2-12 C.

In accordance with an embodiment of the present inven-
tion, conditioned medium collection and preservation is car-
ried out using the following protocol:

Conditioned medium can be kept until use for growth

medium preparation.

Conditioned medium should be collected under sterile con-

ditions.

Spin collected conditioned medium for 10 min at 450 g, 21

C.

Collect supernatant in a new sterile container.

Filter supernatant through a 22 um membrane.

Aliquot conditioned medium to 10 and/or 50 ml sterile

tubes, pre-marked with donor details.

Keep at -20 C. until use.

In accordance with an embodiment of the present inven-
tion, FACS staining is carried out using the following proto-
col:

Protocol 1: Staining of ACP Enriched Population

FACS Staining Protocol:

Tube No.  Staining Aim of staining
1. Cells Un-stained control
2. CD45 (IgG1)-FITC Single staining for PMT and
3. CD14-PE (IgG2a) compensation settings
4. CD45 (IgG1)-APC
5. mlgG1-FITC Isotype control
mlgG1-PE
mlgG1l-APC
6. CD435-FITC (IgG1)

KDR-PE (IgG2a)
CD34-APC (IgG1)

7. Ac-LDL-FITC
CD31-PE (IgG1)

8. Ulex-Lectin-FITC
CD31-PE (IgG1)

9. mlgG1-FITC Isotype control
mlgG2a-PE
mlgG1l-APC

10. CD435-FITC (IgG1)

CD133-PE (IgG2a)
CD34-APC (IgG1)

Protocol 2: Staining of CMC Progenitors

FACS Staining Protocol for Fixed Permeabilized Cells:

Staining 1% Staining 2"¢
Tube No.  step step Aim of staining

1 Cells Un-stained control

2 CD45-FITC Single staining for
(1gG1) PMT and compensation

3 CD14-PE settings
(1gG2a)

5 mlgG1 Anti mouse -PE Isotype control

6 Desmin Anti mouse -PE

7 Troponin T ~ Anti mouse -PE  Isotype control




US 9,234,173 B2

55

In accordance with an embodiment of the present inven-
tion, immunohistochemistry staining (IHC) is carried out
using the following protocols:

Protocol 1: THC Staining Protocol for ACPs

Slide No. Staining 1st step Aim of staining
1. mlgGl Isotype control
2. mlgG1-PE Isotype control
3. CD34-APC Specific Staining
4. CD144-FITC Specific Staining
5. CDI133-PE Specific Staining
6. Ac-LDL-FITC Specific Staining
CD31-PE
7. Ulex-Lectin-FITC Specific Staining
CD31-PE

Protocol 2: IHC Staining Protocol for CMC
Progenitors
Staining 1st Staining 2nd
Slide No.  step step Aim of staining
1. — mlIgG1-FITC Isotype control
2. mlgGl Anti mouse-Cy-3 Isotype control
3. Connexin 43 Anti mouse-FITC Specific Staining
4. Alfa actin Anti mouse-FITC Specific Staining
5. Troponin Anti mouse-PE Specific Staining

In accordance with an embodiment of the present inven-
tion, a tube formation assay is carried out using the following
protocol:

Tube formation was tested using the ECM625(Chemicon)
in vitro angiogenesis assay kit.

Angiogenic pattern and vascular tube formation was
numerically scored as described by Kayisli U. A. et al. 2005
(52).

In accordance with an embodiment of the present inven-
tion, secretion of cytokines from harvested cells is assessed
using the following protocols:

Culture 0.5-1x1076 cells/ml over night in 24 well plates in

serum-free medium (e.g., X-vivo 15)

Collect culture supernatant and spin at 1400 rpm for 5

minutes

Transfer supernatant to an eppendorftube and freeze at —80

C. until ready to test cytokine secretion.

Protocol 1: ELISA for IL-8

A commercial DuoSet CXCr8/IL-8 (R&D Systems) was
used for the detection of IL-8 secretion.

Protocol 2: Cytometric Bead Array

A commercial cytometric bead array (CBA) kit for human
angiogenesis (BD 558014) was used for the detection of
1L-8, VEGF, TNF and Angiogenin secretion.

It is to be noted that the scope of the present invention
includes injecting I1.-8 into a human patient in order to recruit
ACP cells to a given destination within a given patient, in
accordance with the needs of the patient.

For some applications, techniques described herein are
practiced in combination with techniques described in one or
more of the references cited in the Background section and
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Cross-References section of the present patent application.
All references cited herein, including patents, patent applica-
tions, and articles, are incorporated herein by reference.

It is to be appreciated that by way of illustration and not
limitation, techniques are described herein with respect to
cells derived from an animal source. The scope of the present
invention includes performing the techniques described
herein using a CCP derived from non-animal cells (e.g., plant
cells), mutatis mutandis.

It will be appreciated by persons skilled in the art that the
present invention is not limited to what has been particularly
shown and described hereinabove. Rather, the scope of the
present invention includes both combinations and subcombi-
nations of the various features described hereinabove, as well
as variations and modifications thereof that are not in the prior
art, which would occur to persons skilled in the art upon
reading the foregoing description.

The invention claimed is:

1. A method of making a composition comprising:

obtaining an initiating cell population (ICP) of at least ten

thousand cells that have a density of less than 1.072 g/ml
and at least 25% of which are CD31Bright; and

in vitro stimulating the ICP by culturing the ICP in the

presence of one or more factors selected from the group
consisting of: autologous serum, vascular endothelial
growth factor (VEGF), heparin, insulin-like growth fac-
tor (IGF), basic fibroblast growth factor (b-FGF), epi-
dermal growth factor (EGF), and ascorbic acid, to dif-
ferentiate into a progenitor/precursor cell population
(PCP) comprising a subpopulation of cells that stain as
CD31Bright, demonstrate uptake of Ac-LDL+ and
secrete interleukin-8 (IL-8) and angiogenin, wherein the
sub-population of cells comprises at least 10% of cells in
the PCP, to provide for said composition.

2. The method according to claim 1, wherein at least 30%
of the cells of the ICP are CD31Bright, and wherein stimu-
lating the ICP comprises stimulating the ICP of which at least
30% of the cells are CD31Bright.

3. The method according to claim 1, wherein the ICP
includes at least 5 million cells that have a density of less than
1.062 g/ml, at least 1% of which are CD34+CD45-/Dim, and
wherein stimulating the ICP comprises stimulating the ICP
that has the at least 5 million cells that have a density of less
than 1.062 g/ml.

4. The method according to claim 1, comprising applying
cells extracted from a mammalian donor to one or more
gradients suitable for selecting cells having a density of less
than 1.072 g/ml, and deriving the ICP from the cells applied
to the gradient.

5. The method according to claim 1, comprising identify-
ing the PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million PCP cells.

6. The method according to claim 1, comprising identify-
ing the PCP as being suitable for therapeutic implantation in
response to an assessment that the PCP includes at least 1
million angiogenic cell precursors (ACPs).

7. The method according to claim 1, wherein stimulating
the ICP comprises culturing the ICP in a culture medium
comprising at least 10% serum, for a duration of between 1
and 120 days.

8. The method according to claim 1, comprising character-
izing the PCP as including angiogenic cell precursors
(ACPs), in response to an evaluation of at least one feature
selected from the group consisting of: a phenotypical feature
of cells in the PCP, a genotypical feature of cells in the PCP,
and a physiological feature of cells in the PCP.



US 9,234,173 B2

57

9. The method according to claim 8,

wherein the phenotypical feature includes a morphological
feature selected from the group consisting of: a cell size
larger than 20 um, an elongated cell, a spindle-shaped
cell, an irregularly-shaped cell, a granulated cell, a cell
including an enlarged dark nucleus, a multinuclear cell,
a cell including flagella-like structures, a cell including
pseudopodia, and a cell having a polygonal shape; and

wherein characterizing the PCP comprises characterizing
the PCP in response to an evaluation of the selected
morphological feature.

10. The method according to claim 8, wherein character-
izing the PCP comprises characterizing the PCP in response
to an identification in the PCP of a feature selected from the
group consisting of: CD31, CD31Bright, CD34, CD117,
CD133, Tie-2, CD34+CDI133+, KDR, CD34+KDR+,
CD144, von Willebrand Factor, SH2 (CD105), SH3,
fibronectin, collagen type I, collagen type 111, collagen type
IV, ICAM type 1, ICAM type 2, VCAMI, vimentin, BMP-R
1A, BMP-RII, CD44, integrin b1, aSM-actin, MUC18, and
CXCRA4.

11. The method according to claim 8, wherein character-
izing the PCP comprises assessing secretion by the PCP of a
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molecule selected from the group consisting of: IL-8, angio- 25

genin, VEGF, MMP2, and MMP9.

12. The method according to claim 8, wherein character-
izing the PCP comprises culturing at least a portion of the
PCP on amembrane, and identifying a tendency of the at least
a portion of the PCP to migrate toward a chemoattractant

58
selected from the group consisting of: bFGF, VEGF, SCF,
G-CSF, GM-CSF, IL-8, and SDF-1.

13. The method according to claim 1, wherein stimulating
the ICP comprises incubating the ICP in a container having a
surface comprising a growth-enhancing factor.

14. The method according to claim 13, wherein the growth-
enhancing factor comprises a factor selected from the group
consisting of: collagen, plasma, fibronectin, a growth factor,
tissue-derived extra cellular matrix, and an antibody to a stem
cell surface receptor.

15. The method according to claim 1, comprising:

during a hypoxic time period lasting at least 2 hours, cul-

turing the ICP under hypoxic conditions; and

during a non-hypoxic time period lasting at least 1 day,

culturing the ICP under non-hypoxic conditions.

16. The method according to claim 15, wherein the hypoxic
and non-hypoxic time-periods are within a culturing time
period lasting less than 30 days, and wherein culturing the
ICP under hypoxic conditions comprises culturing the cells
under hypoxic conditions during a first two days of the cul-
turing time period.

17. The method according to claim 1, wherein stimulating
comprises co-culturing the ICP with a sample tissue.

18. The method according to claim 17, wherein co-cultur-
ing comprises:

utilizing the sample tissue to produce a conditioned

medium; and

co-culturing the ICP with the sample tissue in the condi-

tioned medium.



